Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 308–317
DOI: https://doi.org/10.31857/S2686954323601677
(Mi danma475)
 

This article is cited in 2 scientific papers (total in 2 papers)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Artificially generated text fragments search in academic documents

G. M. Gritsaiab, A. V. Grabovoyabc, A. S. Kildyakova, Yu. V. Chekhovichac

a Antiplagiat Company, Moscow, Russia
b Moscow Institute of Physics and Technology (National Research University), Moscow, Russia
c Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia
Citations (2)
References:
Abstract: Recent advances in text generative models make it possible to create artificial texts that look like human-written texts. A large number of methods for detecting texts obtained using large language models have already been developed. But the improvement of detection methods occurs simultaneously with the improvement of generation methods. Therefore, it is necessary to explore new generative models and modernize existing approaches to their detection. In this paper, we present a large analysis of existing detection methods, as well as a study of lexical, syntactic and stylistic features of the generated fragments. Taking into account the developments, we have tested the most qualitative, in our opinion, methods of detecting machine-generated documents for their further application in the scientific domain. Experiments were conducted for Russian and English languages on the collected datasets. The developed methods improved the detection quality to a value of 0.968 on the F1-score metric for Russian and 0.825 for English, respectively. The described techniques can be applied to detect generated fragments in scientific, research and graduate papers.
Keywords: machine-generated text, natural language processing, multiple hypothesis testing, paraphrasing, detection of generated texts.
Presented: A. L. Semenov
Received: 02.09.2023
Revised: 15.09.2023
Accepted: 18.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S434–S442
DOI: https://doi.org/10.1134/S1064562423701211
Bibliographic databases:
Document Type: Article
UDC: 004.89
Language: Russian
Citation: G. M. Gritsai, A. V. Grabovoy, A. S. Kildyakov, Yu. V. Chekhovich, “Artificially generated text fragments search in academic documents”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 308–317; Dokl. Math., 108:suppl. 2 (2023), S434–S442
Citation in format AMSBIB
\Bibitem{GriGraKil23}
\by G.~M.~Gritsai, A.~V.~Grabovoy, A.~S.~Kildyakov, Yu.~V.~Chekhovich
\paper Artificially generated text fragments search in academic documents
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 308--317
\mathnet{http://mi.mathnet.ru/danma475}
\crossref{https://doi.org/10.31857/S2686954323601677}
\elib{https://elibrary.ru/item.asp?id=56717843}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S434--S442
\crossref{https://doi.org/10.1134/S1064562423701211}
Linking options:
  • https://www.mathnet.ru/eng/danma475
  • https://www.mathnet.ru/eng/danma/v514/i2/p308
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:67
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024