Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 270–288
DOI: https://doi.org/10.31857/S2686954323601896
(Mi danma472)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Graph models for contextual intention prediction in dialog systems

D. P. Kuznetsov, D. R. Ledneva

Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russian Federation
References:
Abstract: The paper introduces a novel methodology for predicting intentions in dialogue systems through a graph-based approach. This methodology involves constructing graph structures that represent dialogues, thus capturing contextual information effectively. By analyzing results from various open and closed domain datasets, the authors demonstrate the substantial enhancement in intention prediction accuracy achieved by combining graph models with text encoders. The primary focus of the study revolves around assessing the impact of diverse graph architectures and encoders on the performance of the proposed technique. Through empirical evaluation, the experimental outcomes affirm the superiority of graph neural networks in terms of both Recall@k(MAR) metric and computational resources when compared to alternative methods. This research uncovers a novel avenue for intention prediction in dialogue systems by leveraging graph-based representations.
Keywords: intent prediction, dialogue systems, graph neural networks.
Funding agency Grant number
Правительство Российской Федерации 70-2021-00138
This work was supported by a grant for research centers in the field of artificial intelligence, provided by the Analytical Center for the Government of the Russian Federation in accordance with the subsidy agreement (agreement identifier 000000D730321P5Q0002) and the agreement with the Moscow Institute of Physics and Technology dated November 1, 2021 no. 70-2021-00138.
Presented: A. I. Avetisyan
Received: 31.08.2023
Revised: 15.09.2023
Accepted: 15.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S399–S415
DOI: https://doi.org/10.1134/S106456242370117X
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: D. P. Kuznetsov, D. R. Ledneva, “Graph models for contextual intention prediction in dialog systems”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 270–288; Dokl. Math., 108:suppl. 2 (2023), S399–S415
Citation in format AMSBIB
\Bibitem{KuzLed23}
\by D.~P.~Kuznetsov, D.~R.~Ledneva
\paper Graph models for contextual intention prediction in dialog systems
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 270--288
\mathnet{http://mi.mathnet.ru/danma472}
\crossref{https://doi.org/10.31857/S2686954323601896}
\elib{https://elibrary.ru/item.asp?id=56717835}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S399--S415
\crossref{https://doi.org/10.1134/S106456242370117X}
Linking options:
  • https://www.mathnet.ru/eng/danma472
  • https://www.mathnet.ru/eng/danma/v514/i2/p270
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:64
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024