Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 250–261
DOI: https://doi.org/10.31857/S2686954323601501
(Mi danma470)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Hierarchical method for cooperative multi-agent reinforcement learning in Markov decision processes

V. È. Bol'shakov, A. N. Alfimtsev

Bauman Moscow State Technical University, Moscow, Russia
References:
Abstract: In the rapidly evolving field of reinforcement learning, combination of hierarchical and multi-agent learning methods presents unique challenges and opens up new opportunities. This paper discusses a combination of multi-level hierarchical learning with subgoal discovery and multi-agent reinforcement learning with hindsight experience replay. Combining these approaches leads to the creation of Multi-Agent Subgoal Hierarchy Algorithm (MASHA) that allows multiple agents to learn efficiently in complex environments, including environments with sparse rewards. We demonstrate the results of the proposed approach in one of these environments inside the StarCraft II strategy game, in addition to making comparisons with other existing approaches. The proposed algorithm is developed in the paradigm of centralized learning with decentralized execution, which makes it possible to achieve a balance between coordination and autonomy of agents.
Keywords: multi-agent reinforcement learning, hierarchical learning, subgoal discovery, hindsight experience replay, centralized learning with decentralized execution, sparse rewards.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FSFN-2023-0006
The work is supported by the State assignment no. FSFN-2023-0006.
Presented: A. A. Shananin
Received: 01.09.2023
Revised: 29.09.2023
Accepted: 18.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S382–S392
DOI: https://doi.org/10.1134/S1064562423701132
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: V. È. Bol'shakov, A. N. Alfimtsev, “Hierarchical method for cooperative multi-agent reinforcement learning in Markov decision processes”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 250–261; Dokl. Math., 108:suppl. 2 (2023), S382–S392
Citation in format AMSBIB
\Bibitem{BolAlf23}
\by V.~\`E.~Bol'shakov, A.~N.~Alfimtsev
\paper Hierarchical method for cooperative multi-agent reinforcement learning in Markov decision processes
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 250--261
\mathnet{http://mi.mathnet.ru/danma470}
\crossref{https://doi.org/10.31857/S2686954323601501}
\elib{https://elibrary.ru/item.asp?id=56717831}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S382--S392
\crossref{https://doi.org/10.1134/S1064562423701132}
Linking options:
  • https://www.mathnet.ru/eng/danma470
  • https://www.mathnet.ru/eng/danma/v514/i2/p250
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:48
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024