Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 242–249
DOI: https://doi.org/10.31857/S268695432360091X
(Mi danma469)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

An explained artificial intelligence-based solution to identify depression severity symptoms using acoustic features

S. A. Shalilehab, A. O. Koptsevab, T. I. Shishkovskayac, M. V. Khudyakovaad, O. V. Dragoyae

a Center for Language and Brain, HSE University, Moscow, Russia
b Vision Modelling Laboratory, HSE University, Moscow, Russia
c Department of Endogenous Mental Disorders and Affective States, Federal State Budgetary Scientific Institution Mental Health Research Center, Moscow, Russia
d Center for Language and Brain, HSE University, Nizhny Novgorod, Russia
e Institute of Linguistics, Moscow, Russia
References:
Abstract: This paper represents our research to (i) propose an artificial intelligence, AI-based solution to identify depression and (ii) investigate our psychiatric knowledge. Concerning the first objective, we collected and annotated a new audio data set, and scrutinized the performance of eight regression approaches. Our studies showed that $k$-nearest neighbor and random forest form the group having the most acceptable results. Regarding our second objective, we determined the importance of the features of our best model using the SHapley Additive exPlanations approach: our findings showed that the fourth Mel-frequency cepstral coefficients, harmonic difference, and shimmer are the most important features.
Keywords: depression recognition, acoustic features, regression, explainable artificial intelligence, artificial intelligence.
Funding agency Grant number
Правительство Российской Федерации 70-2021-00139
This study was supported by the grant for research centers in the field of AI provided by the Analytical Center for the Government of the Russian Federation (ACRF) in accordance with the agreement on the provision of subsidies (identifier of the agreement 000000D730321P5Q0002) and the agreement with HSE University no. 70-2021-00139.
Presented: A. L. Semenov
Received: 01.08.2023
Revised: 18.08.2023
Accepted: 15.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S374–S381
DOI: https://doi.org/10.1134/S1064562423701090
Bibliographic databases:
Document Type: Article
UDC: 004.891.3
Language: Russian
Citation: S. A. Shalileh, A. O. Koptseva, T. I. Shishkovskaya, M. V. Khudyakova, O. V. Dragoy, “An explained artificial intelligence-based solution to identify depression severity symptoms using acoustic features”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 242–249; Dokl. Math., 108:suppl. 2 (2023), S374–S381
Citation in format AMSBIB
\Bibitem{ShaKopShi23}
\by S.~A.~Shalileh, A.~O.~Koptseva, T.~I.~Shishkovskaya, M.~V.~Khudyakova, O.~V.~Dragoy
\paper An explained artificial intelligence-based solution to identify depression severity symptoms using acoustic features
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 242--249
\mathnet{http://mi.mathnet.ru/danma469}
\crossref{https://doi.org/10.31857/S268695432360091X}
\elib{https://elibrary.ru/item.asp?id=56717829}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S374--S381
\crossref{https://doi.org/10.1134/S1064562423701090}
Linking options:
  • https://www.mathnet.ru/eng/danma469
  • https://www.mathnet.ru/eng/danma/v514/i2/p242
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:71
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024