Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 235–241
DOI: https://doi.org/10.31857/S2686954323601471
(Mi danma468)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Automating the temperament assessment of online social network users

V. D. Oliseenkoa, A. O. Khlobystovaa, A. A. Korepanovaa, T. V. Tulupyevaab

a Laboratory of Theoretical and Interdisciplinary Problems of Computer Science, St. Petersburg Federal Research Center of the Russian Academy of Sciences
b Department of State and Municipal Administration, Northwestern Institute of Management RANEPA, St. Petersburg, Russia
References:
Abstract: The paper deals with the problem of automating the prediction of the Eysenck Personality Questionnaire (temperament test) results by numerical characteristics extracted from the accounts of users of a popular Russian-language online social network. The purpose of the work is to automate the evaluation of the expression of personality traits of online social network users by comparing the results of the test and the content posted by the user on his or her account using machine learning methods. The result of the work is the construction of classifiers based on CatBoost and random forest models for predicting the expression of extraversion-introversion and neuroticism. The theoretical value of the result lies in the development of the approach to research design in the field of automating the assessment of human personality traits expression. Practical significance lies in the development of a program module for assessing the expression of human personality traits on online social networks.
Keywords: pen model, temperament, machine learning, prediction of personality traits, online social networks.
Presented: A. L. Semenov
Received: 31.08.2023
Revised: 15.09.2023
Accepted: 15.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S368–S373
DOI: https://doi.org/10.1134/S1064562423701041
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: V. D. Oliseenko, A. O. Khlobystova, A. A. Korepanova, T. V. Tulupyeva, “Automating the temperament assessment of online social network users”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 235–241; Dokl. Math., 108:suppl. 2 (2023), S368–S373
Citation in format AMSBIB
\Bibitem{OliKhlKor23}
\by V.~D.~Oliseenko, A.~O.~Khlobystova, A.~A.~Korepanova, T.~V.~Tulupyeva
\paper Automating the temperament assessment of online social network users
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 235--241
\mathnet{http://mi.mathnet.ru/danma468}
\crossref{https://doi.org/10.31857/S2686954323601471}
\elib{https://elibrary.ru/item.asp?id=56717823}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S368--S373
\crossref{https://doi.org/10.1134/S1064562423701041}
Linking options:
  • https://www.mathnet.ru/eng/danma468
  • https://www.mathnet.ru/eng/danma/v514/i2/p235
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:56
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024