Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 225–234
DOI: https://doi.org/10.31857/S2686954323601136
(Mi danma467)
 

This article is cited in 2 scientific papers (total in 2 papers)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Spidernet: fully connected residual network for fraud detection

S. V. Afanasiev, A. A. Smirnova, D. M. Kotereva

Sber, Moscow, Russian Federation
Citations (2)
References:
Abstract: In this work, we propose a convolutional neural network architecture SpiderNet designed to solve fraud detection problems. We noticed that the principles of pooling and convolutional layers in neural networks are very similar to the way antifraud analysts work when conducting investigations. Moreover, the skip-connections used in neural networks make the usage of features of various power in antifraud models possible. Our experiments have shown that SpiderNet provides better quality compared to Random Forest and adapted for antifraud modeling problems 1D-CNN, 1D-DenseNet, F-DenseNet neural networks. We also propose new approaches for fraud feature engineering called B-tests and W-tests. The SpiderNet code is available at: https://github.com/aasmirnova24/SpiderNet.
Keywords: neural networks, fraud detection, cnn, feature engineering.
Presented: A. I. Avetisyan
Received: 14.08.2023
Revised: 18.08.2023
Accepted: 15.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S360–S367
DOI: https://doi.org/10.1134/S1064562423701028
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: S. V. Afanasiev, A. A. Smirnova, D. M. Kotereva, “Spidernet: fully connected residual network for fraud detection”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 225–234; Dokl. Math., 108:suppl. 2 (2023), S360–S367
Citation in format AMSBIB
\Bibitem{AfaSmiKot23}
\by S.~V.~Afanasiev, A.~A.~Smirnova, D.~M.~Kotereva
\paper Spidernet: fully connected residual network for fraud detection
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 225--234
\mathnet{http://mi.mathnet.ru/danma467}
\crossref{https://doi.org/10.31857/S2686954323601136}
\elib{https://elibrary.ru/item.asp?id=56717819}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S360--S367
\crossref{https://doi.org/10.1134/S1064562423701028}
Linking options:
  • https://www.mathnet.ru/eng/danma467
  • https://www.mathnet.ru/eng/danma/v514/i2/p225
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:46
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024