Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 196–211
DOI: https://doi.org/10.31857/S268695432360177X
(Mi danma465)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Barcodes as summary of loss function topology

S. A. Barannikovab, A. A. Korotinac, D. A. Oganesyana, D. I. Emtsevad, E. V. Burnaevac

a Skolkovo Institute of Science and Technology, Moscow, Russia
b Université Paris Cité, Paris, France
c Artificial Intelligence Research Institute, Moscow, Russia
d Eidgenösische Technische Hochschule Zürich, Switzerland
References:
Abstract: We propose to study neural networks' loss surfaces by methods of topological data analysis. We suggest to apply barcodes of Morse complexes to explore topology of loss surfaces. An algorithm for calculations of the loss function’s barcodes of local minima is described. We have conducted experiments for calculating barcodes of local minima for benchmark functions and for loss surfaces of small neural networks. Our experiments confirm our two principal observations for neural networks' loss surfaces. First, the barcodes of local minima are located in a small lower part of the range of values of neural networks' loss function. Secondly, increase of the neural network’s depth and width lowers the barcodes of local minima. This has some natural implications for the neural network’s learning and for its generalization properties.
Funding agency Grant number
Russian Foundation for Basic Research 21-51-12005 ÍÍÈÎ_à
This work was partially supported by the Russian Foundation for Basic Research, grant 21-51-12005 NNIO_a.
Presented: A. L. Semenov
Received: 02.09.2023
Revised: 08.09.2023
Accepted: 18.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S333–S347
DOI: https://doi.org/10.1134/S1064562423701570
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: S. A. Barannikov, A. A. Korotin, D. A. Oganesyan, D. I. Emtsev, E. V. Burnaev, “Barcodes as summary of loss function topology”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 196–211; Dokl. Math., 108:suppl. 2 (2023), S333–S347
Citation in format AMSBIB
\Bibitem{BarKorOga23}
\by S.~A.~Barannikov, A.~A.~Korotin, D.~A.~Oganesyan, D.~I.~Emtsev, E.~V.~Burnaev
\paper Barcodes as summary of loss function topology
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 196--211
\mathnet{http://mi.mathnet.ru/danma465}
\crossref{https://doi.org/10.31857/S268695432360177X}
\elib{https://elibrary.ru/item.asp?id=56717814}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S333--S347
\crossref{https://doi.org/10.1134/S1064562423701570}
Linking options:
  • https://www.mathnet.ru/eng/danma465
  • https://www.mathnet.ru/eng/danma/v514/i2/p196
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:64
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024