Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 169–176
DOI: https://doi.org/10.31857/S2686954323601938
(Mi danma462)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Automated system for analysis of OCT retina images development and testing

L. E. Aksenovaab, K. D. Aksenovb, E. V. Kozinaa, V. V. Myasnikovaa

a Krasnodar branch of S. N. Fyodorov Eye Microsurgery Federal State Institution, Krasnodar, Russian Federation
b LLC Predict space, Novorossiysk
References:
Abstract: Neovascular age-related macular degeneration ($n$-AMD) is a form of AMD that is responsible for most cases of severe vision loss. Anti-VEGF therapy, which is the gold standard for the treatment of this pathology, is accompanied by OCT monitoring. However, this process is hampered by the lack of methods for accurately quantifying OCT images. The aim of this study is to develope and evaluate the accuracy of the automated calculation of the quantitative characteristics of PED, SRF and IRF biomarkers. A neural network with U-NET architecture was trained on a manually annotated dataset that included 385 OCT images. The dice coefficient measured on the validation dataset was 0.9, 0.72 and 0.69 for PED, SRF and IRF. The results of the quantitative calculation of these biomarkers did not statistically differ from the measurements of an ophthalmologist. Comparison of groups with respect to the anatomical outcome of therapy showed that PED height, extent, and square are different for groups with adherence and non-adherence PED; and PED height, PED square, and IRF square are different for groups with non-adherence and tear PED. Thus, the algorithm for the quantitative calculation of biomarkers provides more information for assessing the results of therapy, which can improve the outcomes of treatment in patients with $n$-AMD.
Keywords: ophthalmology, artificial intelligence, optical coherence tomography, deep learning, segmentation, biomarkers.
Presented: A. I. Avetisyan
Received: 04.09.2023
Revised: 08.09.2023
Accepted: 24.09.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S310–S316
DOI: https://doi.org/10.1134/S1064562423701545
Bibliographic databases:
Document Type: Article
UDC: 004.93
Language: Russian
Citation: L. E. Aksenova, K. D. Aksenov, E. V. Kozina, V. V. Myasnikova, “Automated system for analysis of OCT retina images development and testing”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 169–176; Dokl. Math., 108:suppl. 2 (2023), S310–S316
Citation in format AMSBIB
\Bibitem{AksAksKoz23}
\by L.~E.~Aksenova, K.~D.~Aksenov, E.~V.~Kozina, V.~V.~Myasnikova
\paper Automated system for analysis of OCT retina images development and testing
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 169--176
\mathnet{http://mi.mathnet.ru/danma462}
\crossref{https://doi.org/10.31857/S2686954323601938}
\elib{https://elibrary.ru/item.asp?id=56717805}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S310--S316
\crossref{https://doi.org/10.1134/S1064562423701545}
Linking options:
  • https://www.mathnet.ru/eng/danma462
  • https://www.mathnet.ru/eng/danma/v514/i2/p169
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024