Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 158–168
DOI: https://doi.org/10.31857/S2686954323601781
(Mi danma461)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Min-max optimization over slowly time-varying graphs

N. T. Nguyena, A. Rogozina, D. Meteleva, A. Gasnikovabcd

a Moscow Institute of Physics and Technology, Moscow, Russia
b Institute for Information Transportation Problems, Moscow, Russia
c Caucasus Mathematic Center of Adygh State University, Moscow, Russia
d Ivannikov Institute for System Programming of the Russian Academy of Sciences, Research Center for Trusted Artificial Intelligence, Moscow, Russia
References:
Abstract: Distributed optimization is an important direction of research in modern optimization theory. Its applications include large scale machine learning, distributed signal processing and many others. The paper studies decentralized min-max optimization for saddle point problems. Saddle point problems arise in training adversarial networks and in robust machine learning. The focus of the work is optimization over (slowly) time-varying networks. The topology of the network changes from time to time, and the velocity of changes is limited. We show that, analogically to decentralized optimization, it is sufficient to change only two edges per iteration in order to slow down convergence to the arbitrary time-varying case. At the same time, we investigate several classes of time-varying graphs for which the communication complexity can be reduced.
Keywords: saddle point problem, decentralized optimization, time-varying graph, extragradient method.
Funding agency Grant number
Russian Science Foundation 23-11-00229
The research was supported by Russian Science Foundation (project no. 23-11-00229), https://rscf.ru/en/project/23-11-00229/.
Presented: A. A. Shananin
Received: 03.09.2023
Revised: 08.09.2023
Accepted: 15.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S300–S309
DOI: https://doi.org/10.1134/S1064562423701533
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: N. T. Nguyen, A. Rogozin, D. Metelev, A. Gasnikov, “Min-max optimization over slowly time-varying graphs”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 158–168; Dokl. Math., 108:suppl. 2 (2023), S300–S309
Citation in format AMSBIB
\Bibitem{NguRogMet23}
\by N.~T.~Nguyen, A.~Rogozin, D.~Metelev, A.~Gasnikov
\paper Min-max optimization over slowly time-varying graphs
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 158--168
\mathnet{http://mi.mathnet.ru/danma461}
\crossref{https://doi.org/10.31857/S2686954323601781}
\elib{https://elibrary.ru/item.asp?id=56717803}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S300--S309
\crossref{https://doi.org/10.1134/S1064562423701533}
Linking options:
  • https://www.mathnet.ru/eng/danma461
  • https://www.mathnet.ru/eng/danma/v514/i2/p158
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024