Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 150–157
DOI: https://doi.org/10.31857/S2686954323601021
(Mi danma460)
 

This article is cited in 1 scientific paper (total in 1 paper)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Neural network approach to the problem of predicting interest rate anomalies under the influence of correlated noise

G. A. Zotov, P. Lukianchenko

HSE University, Moscow, Russian Federation
Citations (1)
References:
Abstract: The aim of this study is to analyze bifurcation points in financial models using colored noise as a stochastic component. The research investigates the impact of colored noise on change-points and approach to their detection via neural networks. The paper presents a literature review on the use of colored noise in complex systems. The Vasicek stochastic model of interest rates is the object of the research. The research methodology involves approximating numerical solutions of the model using the Euler–Maruyama method, calibrating model parameters, and adjusting the integration step. Methods for detecting bifurcation points and their application to the data are discussed. The study results include the outcomes of an LSTM model trained to detect change-points for models with different types of noise. Results are provided for comparison with various change-point windows and forecast step sizes.
Keywords: Vasicek model, colored noise, change-points detection, pelt, bifurcation, structural break, catastrophe.
Presented: A. A. Shananin
Received: 04.08.2023
Revised: 24.08.2023
Accepted: 14.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S293–S299
DOI: https://doi.org/10.1134/S1064562423701521
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. A. Zotov, P. Lukianchenko, “Neural network approach to the problem of predicting interest rate anomalies under the influence of correlated noise”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 150–157; Dokl. Math., 108:suppl. 2 (2023), S293–S299
Citation in format AMSBIB
\Bibitem{ZotLuk23}
\by G.~A.~Zotov, P.~Lukianchenko
\paper Neural network approach to the problem of predicting interest rate anomalies under the influence of correlated noise
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 150--157
\mathnet{http://mi.mathnet.ru/danma460}
\crossref{https://doi.org/10.31857/S2686954323601021}
\elib{https://elibrary.ru/item.asp?id=56717801}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S293--S299
\crossref{https://doi.org/10.1134/S1064562423701521}
Linking options:
  • https://www.mathnet.ru/eng/danma460
  • https://www.mathnet.ru/eng/danma/v514/i2/p150
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024