Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 126–137
DOI: https://doi.org/10.31857/S2686954323601562
(Mi danma458)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Activations and gradients compression for model-parallel training

M. I. Rudakovab, A. N. Beznosikovab, Y. A. Kholodovab, A. V. Gasnikovab

a Innopolis University, Innopolis, Republic of Tatarstan
b Moscow Institute of Physics and Technology, Moscow, Russia
References:
Abstract: Large neural networks require enormous computational clusters of machines. Model-parallel training, when the model architecture is partitioned sequentially between workers, is a popular approach for training modern models. Information compression can be applied to decrease workers' communication time, as it is often a bottleneck in such systems. This work explores how simultaneous compression of activations and gradients in model-parallel distributed training setup affects convergence. We analyze compression methods such as quantization and TopK compression, and also experiment with error compensation techniques. Moreover, we employ TopK with AQ-SGD per-batch error feedback approach. We conduct experiments on image classification and language model fine-tuning tasks. Our findings demonstrate that gradients require milder compression rates than activations. We observe that $K=10\%$ is the highest TopK compression level, which does not harm model convergence severely. Experiments also show that models trained with TopK perform well only when compression is also applied during inference. We find that error feedback techniques do not improve model-parallel training compared to plain compression, but allow model inference without compression with almost no quality drop. Finally, when applied with the AQ-SGD approach, TopK stronger than with $K=30\%$ worsens model performance significantly.
Keywords: distributed learning, model parallelism, activation compression, gradient compression.
Funding agency Grant number
Russian Science Foundation 23-11-00229
The research of A. Beznosikov was supported by Russian Science Foundation (project no. 23-11-00229).
Presented: A. L. Semenov
Received: 01.09.2023
Revised: 15.09.2023
Accepted: 18.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S272–S281
DOI: https://doi.org/10.1134/S1064562423701314
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: M. I. Rudakov, A. N. Beznosikov, Y. A. Kholodov, A. V. Gasnikov, “Activations and gradients compression for model-parallel training”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 126–137; Dokl. Math., 108:suppl. 2 (2023), S272–S281
Citation in format AMSBIB
\Bibitem{RudBezKho23}
\by M.~I.~Rudakov, A.~N.~Beznosikov, Y.~A.~Kholodov, A.~V.~Gasnikov
\paper Activations and gradients compression for model-parallel training
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 126--137
\mathnet{http://mi.mathnet.ru/danma458}
\crossref{https://doi.org/10.31857/S2686954323601562}
\elib{https://elibrary.ru/item.asp?id=56717792}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S272--S281
\crossref{https://doi.org/10.1134/S1064562423701314}
Linking options:
  • https://www.mathnet.ru/eng/danma458
  • https://www.mathnet.ru/eng/danma/v514/i2/p126
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024