Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 118–125
DOI: https://doi.org/10.31857/S2686954323601628
(Mi danma457)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Towards efficient learning of GNN on high-dimensional multi-layered representations of tabular data

A. V. Medvedeva, A. G. Dyakonovb

a Yandex company, Moscow, Russian Federation
b Central University, Moscow, Russian Federation
References:
Abstract: For prediction tasks using tabular data, it is possible to extract additional information about the target variable by examining the relationships between the objects. Specifically, if it is possible to receive a graph in which the objects are represented as vertices and the relationships are expressed as edges, then it is likely that the graph structure will contain valuable information. Recent research has indicated that jointly training graph neural networks and gradient boostings on this type of data can increase the accuracy of predictions. This article proposes new methods for learning on tabular data that incorporates a graph structure, in an attempt to combine modern multilayer techniques for processing tabular data and graph neural networks. In addition, we discuss ways to mitigate the computational complexity of the proposed models, and we conduct experiments in both inductive and transductive settings. Our findings demonstrate that the proposed approaches provide comparable quality to modern methods.
Keywords: tabular data, graph neural networks.
Presented: A. L. Semenov
Received: 01.09.2023
Revised: 15.09.2023
Accepted: 18.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S265–S271
DOI: https://doi.org/10.1134/S1064562423701193
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: A. V. Medvedev, A. G. Dyakonov, “Towards efficient learning of GNN on high-dimensional multi-layered representations of tabular data”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 118–125; Dokl. Math., 108:suppl. 2 (2023), S265–S271
Citation in format AMSBIB
\Bibitem{MedDya23}
\by A.~V.~Medvedev, A.~G.~Dyakonov
\paper Towards efficient learning of GNN on high-dimensional multi-layered representations of tabular data
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 118--125
\mathnet{http://mi.mathnet.ru/danma457}
\crossref{https://doi.org/10.31857/S2686954323601628}
\elib{https://elibrary.ru/item.asp?id=56717782}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S265--S271
\crossref{https://doi.org/10.1134/S1064562423701193}
Linking options:
  • https://www.mathnet.ru/eng/danma457
  • https://www.mathnet.ru/eng/danma/v514/i2/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024