Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 99–108
DOI: https://doi.org/10.31857/S2686954323601768
(Mi danma455)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Algorithms with gradient clipping for stochastic optimization with heavy-tailed noise

M. Yu. Danilova

Moscow Institute of Physics and Technology, Moscow, Russia
References:
Abstract: This article provides a review of the results of several research studies, in which open questions related to the high-probability convergence analysis of stochastic first-order optimization methods under mild assumptions on the noise were gradually addressed. In the beginning, we introduce the concept of gradient clipping, which plays a pivotal role in the development of stochastic methods for successful operation in the case of heavy-tailed distributions. Next, we examine the importance of obtaining the highprobability convergence guarantees and their connection with in-expectation convergence guarantees. The concluding sections of the article are dedicated to presenting the primary findings related to minimization problems and the results of numerical experiments.
Keywords: convex optimization, stochastic optimization, first-order methods.
Funding agency Grant number
Правительство Российской Федерации 70-2021-00138
This work was supported by a grant for research centers in the field of artificial intelligence, provided by the Analytical Center for the Government of the Russian Federation in accordance with the subsidy agreement (agreement identifier 000000D730321P5Q0002) and the agreement with the Moscow Institute of Physics and Technology dated November 1, 2021 no. 70-2021-00138.
Presented: A. A. Shananin
Received: 02.09.2023
Revised: 08.10.2023
Accepted: 15.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S248–S256
DOI: https://doi.org/10.1134/S1064562423701144
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: M. Yu. Danilova, “Algorithms with gradient clipping for stochastic optimization with heavy-tailed noise”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 99–108; Dokl. Math., 108:suppl. 2 (2023), S248–S256
Citation in format AMSBIB
\Bibitem{Dan23}
\by M.~Yu.~Danilova
\paper Algorithms with gradient clipping for stochastic optimization with heavy-tailed noise
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 99--108
\mathnet{http://mi.mathnet.ru/danma455}
\crossref{https://doi.org/10.31857/S2686954323601768}
\elib{https://elibrary.ru/item.asp?id=56717773}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S248--S256
\crossref{https://doi.org/10.1134/S1064562423701144}
Linking options:
  • https://www.mathnet.ru/eng/danma455
  • https://www.mathnet.ru/eng/danma/v514/i2/p99
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:50
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024