Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 80–90
DOI: https://doi.org/10.31857/S2686954323601094
(Mi danma453)
 

This article is cited in 1 scientific paper (total in 1 paper)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

A new computationally simple approach for implementing neural networks with output hard constraints

A. V. Konstantinov, L. V. Utkin

Higher School of Artificial Intelligence Technologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
Citations (1)
References:
Abstract: A new computationally simple method of imposing hard convex constraints on the neural network output values is proposed. The key idea behind the method is to map a vector of hidden parameters of the network to a point that is guaranteed to be inside the feasible set defined by a set of constraints. The mapping is implemented by the additional neural network layer with constraints for output. The proposed method is simply extended to the case when constraints are imposed not only on the output vectors, but also on joint constraints depending on inputs. The projection approach to imposing constraints on outputs can simply be implemented in the framework of the proposed method. It is shown how to incorporate different types of constraints into the proposed method, including linear and quadratic constraints, equality constraints, and dynamic constraints, constraints in the form of boundaries. An important feature of the method is its computational simplicity. Complexities of the forward pass of the proposed neural network layer by linear and quadratic constraints are $O(nm)$ and $O(n^2m)$, respectively, where $n$ is the number of variables, $m$ is the number of constraints. Numerical experiments illustrate the method by solving optimization and classification problems. The code implementing the method is publicly available.
Keywords: neural network, hard constraints, convex set, projection model, optimization problem, classification.
Funding agency Grant number
Russian Science Foundation 21-11-00116
This work was supported by the Russian Science Foundation, grant No. 21-11-00116.
Presented: A. L. Semenov
Received: 09.08.2023
Revised: 25.09.2023
Accepted: 15.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S233–S241
DOI: https://doi.org/10.1134/S1064562423701077
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: A. V. Konstantinov, L. V. Utkin, “A new computationally simple approach for implementing neural networks with output hard constraints”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 80–90; Dokl. Math., 108:suppl. 2 (2023), S233–S241
Citation in format AMSBIB
\Bibitem{KonUtk23}
\by A.~V.~Konstantinov, L.~V.~Utkin
\paper A new computationally simple approach for implementing neural networks with output hard constraints
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 80--90
\mathnet{http://mi.mathnet.ru/danma453}
\crossref{https://doi.org/10.31857/S2686954323601094}
\elib{https://elibrary.ru/item.asp?id=56717765}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S233--S241
\crossref{https://doi.org/10.1134/S1064562423701077}
Linking options:
  • https://www.mathnet.ru/eng/danma453
  • https://www.mathnet.ru/eng/danma/v514/i2/p80
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:61
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024