Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 72–79
DOI: https://doi.org/10.31857/S2686954323601422
(Mi danma452)
 

This article is cited in 7 scientific papers (total in 7 papers)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Spectral neural operators

V. S. Fanaskova, I. V. Oseledetsab

a Skoltech, Moscow, Russia
b AIRI, Moscow, Russia
Citations (7)
References:
Abstract: In recent works, authors introduced neural operator – a particular type of neural network that can approximate maps between infinite-dimensional spaces. Using numerical and analytical techniques, we will highlight the peculiarities of the training and evaluation of these operators. In particular, we will show that for a broad class of neural operators based on integral transformations, a systematic bias is inevitable, owning to aliasing errors. To avoid this bias, we introduce spectral neural operators based on explicit discretization of domain and codomain. Discretization should decrease the approximation properties, but numerical experiments show that the accuracy of spectral neural operators is often superior to the one of neural operators defined on infinite-dimensional Banach spaces.
Keywords: neural operators, pdes.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-10-2021-068
This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 075-10-2021-068).
Presented: A. A. Shananin
Received: 30.08.2023
Revised: 06.09.2023
Accepted: 15.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S226–S232
DOI: https://doi.org/10.1134/S1064562423701107
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: V. S. Fanaskov, I. V. Oseledets, “Spectral neural operators”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 72–79; Dokl. Math., 108:suppl. 2 (2023), S226–S232
Citation in format AMSBIB
\Bibitem{FanOse23}
\by V.~S.~Fanaskov, I.~V.~Oseledets
\paper Spectral neural operators
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 72--79
\mathnet{http://mi.mathnet.ru/danma452}
\crossref{https://doi.org/10.31857/S2686954323601422}
\elib{https://elibrary.ru/item.asp?id=56717762}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S226--S232
\crossref{https://doi.org/10.1134/S1064562423701107}
Linking options:
  • https://www.mathnet.ru/eng/danma452
  • https://www.mathnet.ru/eng/danma/v514/i2/p72
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:109
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024