Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 49–59
DOI: https://doi.org/10.31857/S2686954323601884
(Mi danma450)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Adaptive spectral normalization for generative models

E. A. Egorov, A. I. Rogachev

HSE University, Moscow, Russia
References:
Abstract: When using Wasserstein GAN loss function for training generative adversarial networks (GAN), it is theoretically necessary to limit the discriminators’ expressive power (so called discriminator normalization). Such limitation increases the stability of GAN training at the expense of a less expressive final model. Spectral normalization is one of the normalization algorithms that involves applying a fixed operation independently to each discriminator layer. However, the optimal strength of the discriminator limitation varies for different tasks, which requires a parameterized normalization method. This paper proposes modifications to the spectral normalization algorithm that allow changing the strength of the discriminator limitation. In addition to parameterization, the proposed methods can change the degree of limitation during training, unlike the original algorithm. The quality of the obtained models is explored for each of the proposed methods.
Keywords: generative adversarial network, wasserstein gan, spectral normalization, high energy physics.
Presented: A. I. Avetisyan
Received: 04.09.2023
Revised: 08.09.2023
Accepted: 18.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S205–S214
DOI: https://doi.org/10.1134/S1064562423701089
Bibliographic databases:
Document Type: Article
UDC: 004.85
Language: Russian
Citation: E. A. Egorov, A. I. Rogachev, “Adaptive spectral normalization for generative models”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 49–59; Dokl. Math., 108:suppl. 2 (2023), S205–S214
Citation in format AMSBIB
\Bibitem{EgoRog23}
\by E.~A.~Egorov, A.~I.~Rogachev
\paper Adaptive spectral normalization for generative models
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 49--59
\mathnet{http://mi.mathnet.ru/danma450}
\crossref{https://doi.org/10.31857/S2686954323601884}
\elib{https://elibrary.ru/item.asp?id=56717735}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S205--S214
\crossref{https://doi.org/10.1134/S1064562423701089}
Linking options:
  • https://www.mathnet.ru/eng/danma450
  • https://www.mathnet.ru/eng/danma/v514/i2/p49
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:84
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024