Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 39–48
DOI: https://doi.org/10.31857/S2686954323601239
(Mi danma449)
 

This article is cited in 1 scientific paper (total in 1 paper)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Deep learning approach to classification of acoustic signals using information features

P. V. Lysenko, I. A. Nasonov, A. A. Galyaev, L. M. Berlin

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Москва, Россия
Citations (1)
References:
Abstract: The paper considers the problem of binary classification of acoustic signals of biological origin recorded real environment. Information characteristics such as entropy and statistical complexity are chosen as the characteristic description of objects. The solution methods are based on three neural network architectures modified by the authors (on the Inception core, on the Inception core with the Residual technology, on the Self-Attention structure with LSTM blocks). A dataset from the Kaggle competition for detecting acoustic signatures of whales was used, and a comparison was made between the models in terms of the quality of solving the problem under consideration on a standard set of metrics. The AUC ROC value of more than 90% was obtained, which indicates the successful solution of the problem of detecting a useful signal and indicates the possible applicability of information characteristics to similar tasks.
Keywords: classification of time series, spectrogram, statistical complexity, deep learning.
Funding agency Grant number
Russian Science Foundation 23-19-00134
The study was supported by the Russian Science Foundation (grant 23-19-00134).
Presented: A. L. Semenov
Received: 22.08.2023
Revised: 30.08.2023
Accepted: 10.09.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S196–S204
DOI: https://doi.org/10.1134/S1064562423701065
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: P. V. Lysenko, I. A. Nasonov, A. A. Galyaev, L. M. Berlin, “Deep learning approach to classification of acoustic signals using information features”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 39–48; Dokl. Math., 108:suppl. 2 (2023), S196–S204
Citation in format AMSBIB
\Bibitem{LysNasGal23}
\by P.~V.~Lysenko, I.~A.~Nasonov, A.~A.~Galyaev, L.~M.~Berlin
\paper Deep learning approach to classification of acoustic signals using information features
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 39--48
\mathnet{http://mi.mathnet.ru/danma449}
\crossref{https://doi.org/10.31857/S2686954323601239}
\elib{https://elibrary.ru/item.asp?id=56717725}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S196--S204
\crossref{https://doi.org/10.1134/S1064562423701065}
Linking options:
  • https://www.mathnet.ru/eng/danma449
  • https://www.mathnet.ru/eng/danma/v514/i2/p39
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:77
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024