Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 20–27
DOI: https://doi.org/10.31857/S2686954323601367
(Mi danma447)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Probability calibration on the example of improving early cancer detection: a fuzzy set theory approach

O. A. Filimonova, A. G. Ovsyannikov, N. V. Biryukova

I. M. Sechenov First Moscow State Medical University, Resource Center "Medical Sechenov Preuniversary", Moscow, Russian Federation
References:
Abstract: Cancer is the leading cause of death before the age of 70 years. Cancer mortality is reduced by early detection. To improve the early diagnosis of cancer, we propose a novel probability calibration method based on a fuzzy set theory. Our model for binary classification was tested on the detection of female breast cancer and lung cancer. The first case is complicated by a small data set problem, while the second – by highly imbalanced data. In both cases, our probability calibration method improved Log Loss (the best result is improved on 48.86%), Brier score (the best result is improved on 13.24%), and the area under the PR curve (the best result is improved on 13.94%). The application area of our algorithm can be extended to any progressive diseases and events without a clearly defined boundary.
Keywords: probability calibration, fuzzy set theory, binary classification, early diagnosis of diseases.
Presented: A. I. Avetisyan
Received: 29.08.2023
Revised: 06.09.2023
Accepted: 15.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S179–S185
DOI: https://doi.org/10.1134/S106456242370103X
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: O. A. Filimonova, A. G. Ovsyannikov, N. V. Biryukova, “Probability calibration on the example of improving early cancer detection: a fuzzy set theory approach”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 20–27; Dokl. Math., 108:suppl. 2 (2023), S179–S185
Citation in format AMSBIB
\Bibitem{FilOvsBir23}
\by O.~A.~Filimonova, A.~G.~Ovsyannikov, N.~V.~Biryukova
\paper Probability calibration on the example of improving early cancer detection: a fuzzy set theory approach
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 20--27
\mathnet{http://mi.mathnet.ru/danma447}
\crossref{https://doi.org/10.31857/S2686954323601367}
\elib{https://elibrary.ru/item.asp?id=56717703}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S179--S185
\crossref{https://doi.org/10.1134/S106456242370103X}
Linking options:
  • https://www.mathnet.ru/eng/danma447
  • https://www.mathnet.ru/eng/danma/v514/i2/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:96
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024