Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 1, Pages 118–122
DOI: https://doi.org/10.31857/S2686954323600611
(Mi danma442)
 

MATHEMATICS

Bernstein inequality for Riesz derivative of fractional order less than 1 of entire function of exponential type

A. O. Leont'eva

Ural Federal University, Yekaterinburg, Russian Federation
References:
Abstract: We consider Bernstein inequality for the Riesz derivative of order 0$<\alpha<$1 of entire functions of exponential type in the uniform norm on the real line. The interpolation formula for this operator is obtained; this formula has non-equidistant nodes. By means of this formula, the sharp Bernstein inequality is obtained for all 0$<\alpha<$1, more precisely, the extremal entire function and the exact constant are written out.
Keywords: entire functions of exponential type, Riesz derivative, Bernstein inequality, uniform norm, bessel functions.
Funding agency Grant number
Russian Science Foundation 22-21-00526
The research is supported by Russian Science Foundation (project no. 22-21-00526, https://rscf.ru/en/project/22-21-00526/) in the Ural Federal University.
Presented: V. I. Berdyshev
Received: 01.07.2023
Revised: 10.10.2023
Accepted: 03.11.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 3, Pages 524–527
DOI: https://doi.org/10.1134/S1064562423701491
Bibliographic databases:
Document Type: Article
UDC: 517.518.86
Language: Russian
Citation: A. O. Leont'eva, “Bernstein inequality for Riesz derivative of fractional order less than 1 of entire function of exponential type”, Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023), 118–122; Dokl. Math., 108:3 (2023), 524–527
Citation in format AMSBIB
\Bibitem{Leo23}
\by A.~O.~Leont'eva
\paper Bernstein inequality for Riesz derivative of fractional order less than 1 of entire function of exponential type
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 1
\pages 118--122
\mathnet{http://mi.mathnet.ru/danma442}
\crossref{https://doi.org/10.31857/S2686954323600611}
\elib{https://elibrary.ru/item.asp?id=56718090}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 3
\pages 524--527
\crossref{https://doi.org/10.1134/S1064562423701491}
Linking options:
  • https://www.mathnet.ru/eng/danma442
  • https://www.mathnet.ru/eng/danma/v514/i1/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025