Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 1, Pages 107–111
DOI: https://doi.org/10.31857/S2686954323600118
(Mi danma440)
 

MATHEMATICS

Multidimensional cubatures with super-power convergence

A. A. Belovab, M. A. Tintula

a Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation
b Peoples Friendship University of Russia, Faculty of Physical, Mathematical and Natural Sciences, Moscow, Russian Federation
References:
Abstract: In many applications, multidimensional integrals over the unit hypercube arise, which are calculated using Monte Carlo methods. The convergence of the best of them turns out to be quite slow. In this paper, fundamentally new cubatures with super-power convergence based on the improved Korobov grids and special variable substitution are proposed. A posteriori error estimates are constructed, which are practically indistinguishable from the actual accuracy. Examples of calculations illustrating the advantages of the proposed methods are given.
Keywords: multidimensional integrals, Monte Carlo method, super-power convergence, Korobov grids.
Funding agency Grant number
Russian Science Foundation 22-71-00028
This work was supported by the Russian Science Foundation, project no. 22-71-00028.
Presented: E. E. Tyrtyshnikov
Received: 06.03.2023
Revised: 18.09.2023
Accepted: 15.11.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 3, Pages 514–518
DOI: https://doi.org/10.1134/S1064562423701478
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: A. A. Belov, M. A. Tintul, “Multidimensional cubatures with super-power convergence”, Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023), 107–111; Dokl. Math., 108:3 (2023), 514–518
Citation in format AMSBIB
\Bibitem{BelTin23}
\by A.~A.~Belov, M.~A.~Tintul
\paper Multidimensional cubatures with super-power convergence
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 1
\pages 107--111
\mathnet{http://mi.mathnet.ru/danma440}
\crossref{https://doi.org/10.31857/S2686954323600118}
\elib{https://elibrary.ru/item.asp?id=56718085}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 3
\pages 514--518
\crossref{https://doi.org/10.1134/S1064562423701478}
Linking options:
  • https://www.mathnet.ru/eng/danma440
  • https://www.mathnet.ru/eng/danma/v514/i1/p107
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025