Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 1, Pages 89–97
DOI: https://doi.org/10.31857/S268695432360218X
(Mi danma438)
 

MATHEMATICS

Approximation algorithms with constant factors for a series of asymmetric routing problems

E. D. Neznakhinaab, Yu. Yu. Ogorodnikovab, K. V. Ryzhenkoa, M. Yu. Khachaya

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
b Ural Federal University, Ekaterinburg, Russia
References:
Abstract: In this paper, the first fixed-ratio approximation algorithms are proposed for the series of asymmetric settings of the well-known combinatorial routing problems. Among them are the Steiner cycle problem, the prize-collecting traveling salesman problem, the minimum cost cycle cover problem by a bounded number of cycles, etc. Almost all the proposed algorithms rely on original reductions of the considered problems to auxiliary instances of the asymmetric traveling salesman problem and employ the breakthrough approximation results for this problem obtained recently by O. Svensson, J. Tarnawski, L. Végh, V. Traub and J. Vygen. On the other hand, approximation of the cycle cover problem was proved by more deep extension of their approach.
Keywords: asymmetric traveling salesman problem, approximation algorithm, constant ratio, steiner cycle problem, vehicle routing problem, cycle cover problem.
Funding agency Grant number
Russian Science Foundation 22-21-00672
This research was supported by the Russian Science Foundation, grant no. 22-21-00672, https://rscf.ru/en/project/22-21-00672/.
Received: 19.09.2023
Revised: 18.10.2023
Accepted: 05.11.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 3, Pages 499–505
DOI: https://doi.org/10.1134/S1064562423701454
Bibliographic databases:
Document Type: Article
UDC: 519.16 + 519.85
Language: Russian
Citation: E. D. Neznakhina, Yu. Yu. Ogorodnikov, K. V. Ryzhenko, M. Yu. Khachay, “Approximation algorithms with constant factors for a series of asymmetric routing problems”, Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023), 89–97; Dokl. Math., 108:3 (2023), 499–505
Citation in format AMSBIB
\Bibitem{NezOgoRyz23}
\by E.~D.~Neznakhina, Yu.~Yu.~Ogorodnikov, K.~V.~Ryzhenko, M.~Yu.~Khachay
\paper Approximation algorithms with constant factors for a series of asymmetric routing problems
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 1
\pages 89--97
\mathnet{http://mi.mathnet.ru/danma438}
\crossref{https://doi.org/10.31857/S268695432360218X}
\elib{https://elibrary.ru/item.asp?id=56718079}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 3
\pages 499--505
\crossref{https://doi.org/10.1134/S1064562423701454}
Linking options:
  • https://www.mathnet.ru/eng/danma438
  • https://www.mathnet.ru/eng/danma/v514/i1/p89
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025