Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 1, Pages 79–81
DOI: https://doi.org/10.31857/S2686954323600568
(Mi danma436)
 

MATHEMATICS

Operator group generated by a one-dimensional Dirac system

A. M. Savchuk, I. V. Sadovnichaya

Lomonosov Moscow State University
References:
Abstract: In this paper, we construct a strongly continuous operator group generated by a one-dimensional Dirac operator acting in the space $\mathbb{H}=(L_2[0,\pi])^2$. The potential is assumed to be summable. It is proved that this group is well-defined in the space $\mathbb{H}$ and in the Sobolev spaces $\mathbb{H}^\theta_U$, $\theta>0$, with fractional index of smoothness $\theta$ and under boundary conditions $U$. Similar results are proved in the spaces $(L_\mu[0,\pi])^2$, $\mu\in(1,\infty)$. In addition we obtain estimates for the growth of the group as $t\to\infty$.
Keywords: Dirac operator, summable potential, operator group.
Presented: B. S. Kashin
Received: 26.06.2023
Revised: 25.10.2023
Accepted: 01.11.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 3, Pages 490–492
DOI: https://doi.org/10.1134/S1064562423701430
Bibliographic databases:
Document Type: Article
UDC: 517.984.52
Language: Russian
Citation: A. M. Savchuk, I. V. Sadovnichaya, “Operator group generated by a one-dimensional Dirac system”, Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023), 79–81; Dokl. Math., 108:3 (2023), 490–492
Citation in format AMSBIB
\Bibitem{SavSad23}
\by A.~M.~Savchuk, I.~V.~Sadovnichaya
\paper Operator group generated by a one-dimensional Dirac system
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 1
\pages 79--81
\mathnet{http://mi.mathnet.ru/danma436}
\crossref{https://doi.org/10.31857/S2686954323600568}
\elib{https://elibrary.ru/item.asp?id=56718075}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 3
\pages 490--492
\crossref{https://doi.org/10.1134/S1064562423701430}
Linking options:
  • https://www.mathnet.ru/eng/danma436
  • https://www.mathnet.ru/eng/danma/v514/i1/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025