Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 1, Pages 65–68
DOI: https://doi.org/10.31857/S268695432360012X
(Mi danma433)
 

MATHEMATICS

Existence and relaxation of solutions for a differential inclusion with maximal monotone operators and perturbations

A. A. Tolstonogov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk, Russian Federation
References:
Abstract: A differential inclusion with a time-dependent maximal monotone operator and a perturbation is studied in a separable Hilbert space. The perturbation is the sum of a time-dependent single-valued operator and a multivalued mapping with closed nonconvex values. A particular feature of the single-valued operator is that its sum its with the identity operator multiplied by a positive square-integrable function is a monotone operator. The multivalued mapping is Lipschitz continuous with respect to the phase variable. We prove the existence of a solution and the density in the corresponding topology of the solution set of the initial inclusion in the solution set of the inclusion with the convexified multivalued mapping. For these purposes, new distances between maximal monotone operators are introduced.
Keywords: maximal monotone operator, $\rho$-excess of operators, relaxation.
Received: 03.03.2023
Revised: 27.07.2023
Accepted: 02.11.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 3, Pages 477–480
DOI: https://doi.org/10.1134/S1064562423701399
Bibliographic databases:
Document Type: Article
UDC: 517.911.5
Language: Russian
Citation: A. A. Tolstonogov, “Existence and relaxation of solutions for a differential inclusion with maximal monotone operators and perturbations”, Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023), 65–68; Dokl. Math., 108:3 (2023), 477–480
Citation in format AMSBIB
\Bibitem{Tol23}
\by A.~A.~Tolstonogov
\paper Existence and relaxation of solutions for a differential inclusion with maximal monotone operators and perturbations
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 1
\pages 65--68
\mathnet{http://mi.mathnet.ru/danma433}
\crossref{https://doi.org/10.31857/S268695432360012X}
\elib{https://elibrary.ru/item.asp?id=56718067}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 3
\pages 477--480
\crossref{https://doi.org/10.1134/S1064562423701399}
Linking options:
  • https://www.mathnet.ru/eng/danma433
  • https://www.mathnet.ru/eng/danma/v514/i1/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:68
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024