Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 1, Pages 59–64
DOI: https://doi.org/10.31857/S2686954323600453
(Mi danma432)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

Existence of maximum of time averaged harvesting in the KPP-model on sphere with permanent and impulse collection

E. V. Vinnikovab, A. A. Davydovab, D. V. Tunitskyc

a Lomonosov Moscow State University, Moscow, Russian Federation
b NUST MISIS, Moscow, Russian Federation
c V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russian Federation
Citations (4)
References:
Abstract: On a two-dimensional sphere, a distributed renewable resource is considered, the dynamics of which is described by a model of the Kolmogorov–Petrovsky–Piskunov–Fisher type, and the exploitation of this resource, carried out by constant or periodic impulse harvesting. It is shown that after choosing an admissible exploitation strategy, the dynamics of the resource tend to the limiting dynamics corresponding to this strategy, and that there is an admissible harvesting strategy that maximizes the time averaged harvesting of the resource.
Keywords: Kolmogorov–Petrovsky–Piskunov–Fisher model, parabolic semilinear equation, weak solution, stabilization, optimal control.
Funding agency Grant number
Russian Science Foundation 19-11-00223
This work was supported by the Russian Science Foundation, project no. 19-11-00223, and was performed at Lomonosov Moscow State University.
Presented: A. L. Semenov
Received: 30.05.2023
Revised: 23.10.2023
Accepted: 03.11.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 3, Pages 472–476
DOI: https://doi.org/10.1134/S1064562423701387
Bibliographic databases:
Document Type: Article
UDC: 517.956.4+517.956.8+517.955
Language: Russian
Citation: E. V. Vinnikov, A. A. Davydov, D. V. Tunitsky, “Existence of maximum of time averaged harvesting in the KPP-model on sphere with permanent and impulse collection”, Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023), 59–64; Dokl. Math., 108:3 (2023), 472–476
Citation in format AMSBIB
\Bibitem{VinDavTun23}
\by E.~V.~Vinnikov, A.~A.~Davydov, D.~V.~Tunitsky
\paper Existence of maximum of time averaged harvesting in the KPP-model on sphere with permanent and impulse collection
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 1
\pages 59--64
\mathnet{http://mi.mathnet.ru/danma432}
\crossref{https://doi.org/10.31857/S2686954323600453}
\elib{https://elibrary.ru/item.asp?id=56718062}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 3
\pages 472--476
\crossref{https://doi.org/10.1134/S1064562423701387}
Linking options:
  • https://www.mathnet.ru/eng/danma432
  • https://www.mathnet.ru/eng/danma/v514/i1/p59
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:86
    References:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024