Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 1, Pages 52–58
DOI: https://doi.org/10.31857/S2686954323600465
(Mi danma431)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

About the boundary condition approximation in the higher-order grid-characteristic schemes

I. B. Petrova, V. I. Golubevab, A. V. Shevchenkoab, I. S. Nikitinb

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russian Federation
b Institute of Computer Aided Design of RAS, Moscow, Russian Federation
Citations (1)
References:
Abstract: In this paper, we consider the problem of constructing a numerical solution to the system of equations of an acoustic medium in a fixed domain with a boundary. Physically, it corresponds to the process of the seismic wave propagation in geological media during the procedure of the seismic exploration of hydrocarbon deposits. The system of partial differential equations under consideration is hyperbolic. To construct its numerical solution, a grid-characteristic method is used on an extended spatial stencil. This approach makes it possible to construct a higher-order approximation scheme at the internal points of the computational domain. However, it requires a careful construction of the numerical solution near the boundaries. In this paper, the approach that preserves the increased approximation order up to the boundary is proposed. The verification numerical simulations were carried out.
Keywords: acoustic waves, computer simulation, grid-characteristic method, boundary conditions, approximation order.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation
This work was carried out within the state assignment at the Institute of Computer Aided Design of the Russian Academy of Sciences.
Received: 02.06.2023
Revised: 19.10.2023
Accepted: 03.11.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 3, Pages 466–471
DOI: https://doi.org/10.1134/S1064562423701375
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: I. B. Petrov, V. I. Golubev, A. V. Shevchenko, I. S. Nikitin, “About the boundary condition approximation in the higher-order grid-characteristic schemes”, Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023), 52–58; Dokl. Math., 108:3 (2023), 466–471
Citation in format AMSBIB
\Bibitem{PetGolShe23}
\by I.~B.~Petrov, V.~I.~Golubev, A.~V.~Shevchenko, I.~S.~Nikitin
\paper About the boundary condition approximation in the higher-order grid-characteristic schemes
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 1
\pages 52--58
\mathnet{http://mi.mathnet.ru/danma431}
\crossref{https://doi.org/10.31857/S2686954323600465}
\elib{https://elibrary.ru/item.asp?id=56716726}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 3
\pages 466--471
\crossref{https://doi.org/10.1134/S1064562423701375}
Linking options:
  • https://www.mathnet.ru/eng/danma431
  • https://www.mathnet.ru/eng/danma/v514/i1/p52
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:66
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024