Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 1, Pages 34–38
DOI: https://doi.org/10.31857/S2686954323600271
(Mi danma428)
 

MATHEMATICS

A stability estimate in the source problem for the radiative transfer equation

V. G. Romanov

Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
References:
Abstract: It is given a stability estimate of a solution of a source problem for the stationary radiative transfer equation. It is suppose that the source is an isotropic distribution. Earlier stability estimates for this problem were known in a partial case of the emission tomography problem only, when the scattering operator vanishes, and for the complete transfer equation under additional and difficult in checking conditions for the absorption coefficient and the scattering kernel. In the present work, we suggest a new and enough simple approach for obtaining a stability estimate for the problem under the consideration. The transfer equation is considered in a circle of the two-dimension space. In the forward problem, it is assumed that incoming radiation is absent. In the inverse problem for recovering the unknown source some data for solutions of the forward problem related to outgoing radiation are given. The obtained result can be used for an estimation of the summary density of distributed sources of the radiation.
Keywords: radiative transfer equation, source problem, stability estimate.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-281
This work was supported by the Mathematical Center in Akademgorodok, agreement no. 075-15-2022-281 with the Ministry of Science and Higher Education of the Russian Federation.
Received: 10.05.2023
Revised: 15.09.2023
Accepted: 18.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 3, Pages 450–453
DOI: https://doi.org/10.1134/S106456242370134X
Bibliographic databases:
Document Type: Article
UDC: 517.968
Language: Russian
Citation: V. G. Romanov, “A stability estimate in the source problem for the radiative transfer equation”, Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023), 34–38; Dokl. Math., 108:3 (2023), 450–453
Citation in format AMSBIB
\Bibitem{Rom23}
\by V.~G.~Romanov
\paper A stability estimate in the source problem for the radiative transfer equation
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 1
\pages 34--38
\mathnet{http://mi.mathnet.ru/danma428}
\crossref{https://doi.org/10.31857/S2686954323600271}
\elib{https://elibrary.ru/item.asp?id=56716655}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 3
\pages 450--453
\crossref{https://doi.org/10.1134/S106456242370134X}
Linking options:
  • https://www.mathnet.ru/eng/danma428
  • https://www.mathnet.ru/eng/danma/v514/i1/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024