Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 1, Pages 26–33
DOI: https://doi.org/10.31857/S2686954323600313
(Mi danma427)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Regularized equations for dynamics of the heterogeneous binary mixtures of the Noble-Abel stiffened-gases and their application

A. A. Zlotnikab, T. A. Lomonosovab

a HSE University, Moscow, Russia
b Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
Citations (1)
References:
Abstract: We consider the so-called four-equation model for dynamics of the heterogeneous compressible binary mixtures with the Noble-Abel stiffened-gas equations of state. We exploit its quasi-homogeneous form arising after excluding the volume concentrations from the sought functions and based on a quadratic equation for the common pressure of the components. We present new properties of this equation and a simple formula for the squared speed of sound, suggest an alternative derivation for a formula relating it to the squared Wood speed of sound and state the pressure balance equation. For the first time, we give quasi-gasdynamic-type regularization of the heterogeneous model (in the quasi-homogeneous form), construct explicit two-level in time and symmetric three point in space finite-difference scheme without limiters to implement it in the 1D case and present numerical results.
Keywords: gas dynamics, heterogeneous binary gas mixture, four-equation model, Noble-Abel stiffened-gas, quasi-gasdynamic regularization, explicit in time and symmetric in space scheme.
Funding agency Grant number
Russian Science Foundation 22-11-00126
Moscow Center of Fundamental and Applied Mathematics 075-15-2022-283
This work was financially supported by the Russian Science Foundation, grant no. 22-11-00126 (A.A. Zlotnik, Sections 1 and 2) and by the Moscow Center of Fundamental and Applied Mathematics Agreement with the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-15-2022-283 (both the authors, Sections 3 and 4).
Presented: B. N. Chetverushkin
Received: 12.05.2023
Revised: 16.08.2023
Accepted: 21.09.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 3, Pages 443–449
DOI: https://doi.org/10.1134/S1064562423701338
Bibliographic databases:
Document Type: Article
UDC: 519.634:517.956.35
Language: Russian
Citation: A. A. Zlotnik, T. A. Lomonosov, “Regularized equations for dynamics of the heterogeneous binary mixtures of the Noble-Abel stiffened-gases and their application”, Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023), 26–33; Dokl. Math., 108:3 (2023), 443–449
Citation in format AMSBIB
\Bibitem{ZloLom23}
\by A.~A.~Zlotnik, T.~A.~Lomonosov
\paper Regularized equations for dynamics of the heterogeneous binary mixtures of the Noble-Abel stiffened-gases and their application
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 1
\pages 26--33
\mathnet{http://mi.mathnet.ru/danma427}
\crossref{https://doi.org/10.31857/S2686954323600313}
\elib{https://elibrary.ru/item.asp?id=56716640}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 3
\pages 443--449
\crossref{https://doi.org/10.1134/S1064562423701338}
Linking options:
  • https://www.mathnet.ru/eng/danma427
  • https://www.mathnet.ru/eng/danma/v514/i1/p26
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025