Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 1, Pages 20–25
DOI: https://doi.org/10.31857/S2686954323700327
(Mi danma426)
 

MATHEMATICS

Upper bound for the competitive facility location problem with demand uncertainty

V. L. Beresnevab, A. A. Melnikovab

a Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
b Novosibirsk State University, Novosibirsk, Russian Federation
References:
Abstract: We consider a competitive facility location problem with two competing parties operating in a situation of uncertain demand scenario. The problem to find the best solutions for the parties is formulated as a discrete bi-level mathematical programming problem. In the paper, we suggest a procedure to compute an upper bound for the objective function on subsets. The procedure could be employed in implicit enumeration schemes capable to compute an optimal solution for the problem under study. Within the procedure, additional constraints iteratively augment the high-point relaxation of the initial bi-level problem, what strengthens the relaxation and improves the upper bound’s quality. New procedure to generate such cuts allows to construct the strongest cuts without enumerating the parameters encoding them.
Keywords: bi-level programming, Stackelberg game, competitive facility location, pessimistic optimal.
Funding agency Grant number
Russian Science Foundation 21-41-09017
This work was supported by the Russian Science Foundation, project no. 21-41-09017.
Presented: V. G. Romanov
Received: 06.04.2023
Revised: 26.09.2023
Accepted: 14.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 3, Pages 438–442
DOI: https://doi.org/10.1134/S1064562423600318
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. L. Beresnev, A. A. Melnikov, “Upper bound for the competitive facility location problem with demand uncertainty”, Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023), 20–25; Dokl. Math., 108:3 (2023), 438–442
Citation in format AMSBIB
\Bibitem{BerMel23}
\by V.~L.~Beresnev, A.~A.~Melnikov
\paper Upper bound for the competitive facility location problem with demand uncertainty
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 1
\pages 20--25
\mathnet{http://mi.mathnet.ru/danma426}
\crossref{https://doi.org/10.31857/S2686954323700327}
\elib{https://elibrary.ru/item.asp?id=56716634}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 3
\pages 438--442
\crossref{https://doi.org/10.1134/S1064562423600318}
Linking options:
  • https://www.mathnet.ru/eng/danma426
  • https://www.mathnet.ru/eng/danma/v514/i1/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:47
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024