Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 513, Pages 108–114
DOI: https://doi.org/10.31857/S2686954323600301
(Mi danma423)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Principle of dynamic balance of demographic process and the limits of World population growth

V. V. Zakharov

Saint Petersburg State University, Saint Petersburg, Russia
Citations (2)
References:
Abstract: The article proposed a new model of the dynamics of growth of the World population, including discrete equations of the dynamics of percentage increases in integral volumes of inflow and outflow and a balance equation of population size. The principle of the dynamic balance of the demographic process and the condition of interval dynamic consistency based on this principle are formulated. A sample example of forecasting the growth of the World population in the period from 2011 to 2021 is given, demonstrating the possibility of building linear dynamic trends in the percentage increase in the integral volume of dead people, dynamically consistent with the corresponding intervals of statistics on the integral volumes of born children of earlier periods. Based on the proposed model, a forecast of the growth of the World population after 2021 was built, assuming that by 2050 the population will reach 9.466 billion, and in 2062 it will reach the maximum level of 9.561 billion, after which the World population will begin to decline and in 2100 will amount to 8.670 billion.
Keywords: World population growth, balance equation, dynamic balance principle, forecasting.
Funding agency Grant number
Russian Science Foundation 23-21-10049
St. Petersburg Foundation for Science, Technology and Innovation
This work was supported by the Russian Science Foundation, grant no. 23-21-10049 https://rscf.ru/en/project/23-21-10049/ and by St. Petersburg Science Foundation.
Presented: D. A. Novikov
Received: 11.05.2023
Revised: 26.09.2023
Accepted: 25.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 2, Pages 419–424
DOI: https://doi.org/10.1134/S1064562423701302
Bibliographic databases:
Document Type: Article
UDC: 51-77+314.82
Language: Russian
Citation: V. V. Zakharov, “Principle of dynamic balance of demographic process and the limits of World population growth”, Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023), 108–114; Dokl. Math., 108:2 (2023), 419–424
Citation in format AMSBIB
\Bibitem{Zak23}
\by V.~V.~Zakharov
\paper Principle of dynamic balance of demographic process and the limits of World population growth
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 513
\pages 108--114
\mathnet{http://mi.mathnet.ru/danma423}
\crossref{https://doi.org/10.31857/S2686954323600301}
\elib{https://elibrary.ru/item.asp?id=56716618}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 2
\pages 419--424
\crossref{https://doi.org/10.1134/S1064562423701302}
Linking options:
  • https://www.mathnet.ru/eng/danma423
  • https://www.mathnet.ru/eng/danma/v513/p108
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:37
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024