Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 513, Pages 88–92
DOI: https://doi.org/10.31857/S2686954323600283
(Mi danma420)
 

MATHEMATICS

Study of Volterra integro-differential equations by methods of semigroup theory

N. A. Rautian

Lomonosov Moscow State University, Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
References:
Abstract: The abstract Volterra integro-differential equations are investigated, which are operator models of problems of viscoelasticity theory. The class of equations under consideration also includes the Gurtin–Pipkin integro-differential equations describing the process of heat propagation in media with memory. The sums of decreasing exponents or sums of Rabotnov functions with positive coefficients can be considered in particular as the kernels of integral operators, which are widely used in the theory of viscoelasticity and heat propagation theory.
Keywords: Volterra integro-differential equations, linear differential equations in Hilbert spaces, semigroups.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics
Ministry of Science and Higher Education of the Russian Federation FSSF-2023-0016
Theorems 1–3 were proved under the financial support of the Ministry of Education and Science of the Russian Federation as part of the program of the Moscow Center for Fundamental and Applied Mathematics. Theorem 4 was proved under the support of the Ministry of Education and Science of the Russian Federation as part of the state assignment, project no. FSSF-2023-0016.
Presented: V. A. Sadovnichii
Received: 10.05.2023
Revised: 12.07.2023
Accepted: 23.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 2, Pages 402–405
DOI: https://doi.org/10.1134/S1064562423701272
Bibliographic databases:
Document Type: Article
UDC: 517.968.72
Language: Russian
Citation: N. A. Rautian, “Study of Volterra integro-differential equations by methods of semigroup theory”, Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023), 88–92; Dokl. Math., 108:2 (2023), 402–405
Citation in format AMSBIB
\Bibitem{Rau23}
\by N.~A.~Rautian
\paper Study of Volterra integro-differential equations by methods of semigroup theory
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 513
\pages 88--92
\mathnet{http://mi.mathnet.ru/danma420}
\crossref{https://doi.org/10.31857/S2686954323600283}
\elib{https://elibrary.ru/item.asp?id=56716600}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 2
\pages 402--405
\crossref{https://doi.org/10.1134/S1064562423701272}
Linking options:
  • https://www.mathnet.ru/eng/danma420
  • https://www.mathnet.ru/eng/danma/v513/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:69
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024