Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 513, Pages 76–87
DOI: https://doi.org/10.31857/S2686954323600805
(Mi danma419)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On the canonical Ramsey theorem of Erdös and Rado and Ramsey ultrafilters

N. L. Poliakov

HSE University, Moscow, Russia
Citations (1)
References:
Abstract: We give a characterizations of Ramsey ultrafilters on $\omega$ in terms of functions $f\colon\omega^n\to\omega$ and their ultrafilter extensions. To do this, we prove that for any partition $\mathcal{P}$ of $[\omega]^n$ there is a finite partition $\mathcal{Q}$ of $[\omega]^{2n}$ such that any set $X\subseteq\omega$ that is homogeneous for $\mathcal{Q}$ is a finite union of sets that are canonical for $\mathcal{P}$.
Keywords: Ramsey theorem, canonical Ramsey theorem, homogeneous set, canonical set, ultrafilter, Ramsey ultrafilter, Rudin–Keisler order, ultrafilter extension.
Presented: A. L. Semenov
Received: 14.07.2023
Revised: 31.07.2023
Accepted: 07.08.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 2, Pages 392–401
DOI: https://doi.org/10.1134/S1064562423700977
Bibliographic databases:
Document Type: Article
UDC: 519.15
Language: Russian
Citation: N. L. Poliakov, “On the canonical Ramsey theorem of Erdös and Rado and Ramsey ultrafilters”, Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023), 76–87; Dokl. Math., 108:2 (2023), 392–401
Citation in format AMSBIB
\Bibitem{Pol23}
\by N.~L.~Poliakov
\paper On the canonical Ramsey theorem of Erd\"os and Rado and Ramsey ultrafilters
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 513
\pages 76--87
\mathnet{http://mi.mathnet.ru/danma419}
\crossref{https://doi.org/10.31857/S2686954323600805}
\elib{https://elibrary.ru/item.asp?id=56716564}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 2
\pages 392--401
\crossref{https://doi.org/10.1134/S1064562423700977}
Linking options:
  • https://www.mathnet.ru/eng/danma419
  • https://www.mathnet.ru/eng/danma/v513/p76
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024