Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 513, Pages 71–75
DOI: https://doi.org/10.31857/S2686954323600076
(Mi danma418)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Gradient flows in the shape optimization theory

P. I. Plotnikova, J. Sokolowskibcd

a Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
b Systems Research Institute of the Polish Academy of Sciences, Warszawa, Poland
c Institut Elie Cartan, Laboratoire de Mathematiques, Universite de Lorraine, Nancy, France
d Department of Scientific Computing, Informatics Center, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
Citations (1)
References:
Abstract: The identification problem of an inclusion is considered in the paper. The inclusion is unknown subdomain of a given physical region. The available information on the inclusion is governed by measurements on the boundary of this region. In particular, the single measurement problem of impedance electrotomography and other inverse problems are included in our approach. The shape identification problem can be solved by the minimization of an objective function taking into account the measurement data. The best choice of such objective function is the Kohn–Vogelius energy functional. The standard regularization of the Kohn–Vogelius functional include the perimeter and Willmore curvature functional evaluated for an admissible inclusion boundary. In the two-dimensional case, a nonlocal existence theorem of strong solutions is proved for the gradient flow dynamical system generated for such a regularization of the Kohn–Vogelius functional.
Keywords: shape optimization, inverse problems, Willmore flow, Euler elastica.
Received: 06.02.2023
Revised: 02.05.2023
Accepted: 07.08.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 2, Pages 387–391
DOI: https://doi.org/10.1134/S1064562423700990
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: P. I. Plotnikov, J. Sokolowski, “Gradient flows in the shape optimization theory”, Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023), 71–75; Dokl. Math., 108:2 (2023), 387–391
Citation in format AMSBIB
\Bibitem{PloSok23}
\by P.~I.~Plotnikov, J.~Sokolowski
\paper Gradient flows in the shape optimization theory
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 513
\pages 71--75
\mathnet{http://mi.mathnet.ru/danma418}
\crossref{https://doi.org/10.31857/S2686954323600076}
\elib{https://elibrary.ru/item.asp?id=56716558}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 2
\pages 387--391
\crossref{https://doi.org/10.1134/S1064562423700990}
Linking options:
  • https://www.mathnet.ru/eng/danma418
  • https://www.mathnet.ru/eng/danma/v513/p71
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:58
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024