Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 513, Pages 66–70
DOI: https://doi.org/10.31857/S2686954323700285
(Mi danma417)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On the finiteness of the set of generalized Jacobians with nontrivial torsion points over algebraic number fields

V. P. Platonovab, V. S. Zhgoonacd, G.V. Fedorovae

a Federal State Institution Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Moscow, Russian Federation
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russian Federation
c National Research University Higher School of Economics, Moscow, Russian Federation
d Moscow Institute of Physics and Technology (National Research University), Moscow, Russian Federation
e Lomonosov Moscow State University, Moscow, Russian Federation
Citations (1)
References:
Abstract: For a smooth projective curve $\mathcal{C}$ defined over algebraic number field $k$, we investigate the question of finiteness of the set of generalized Jacobians $J_m$ of a curve $\mathcal{C}$ associated with modules $m$ defined over $k$ such that a fixed divisor representing a class of finite order in the Jacobian $J$ of the curve $\mathcal{C}$ provides the torsion class in the generalized Jacobian $J_m$. Various results on the finiteness and infiniteness of the set of generalized Jacobians with the above property are obtained depending on the geometric conditions on the support of $m$, as well as on the conditions on the field $k$. These results were applied to the problem of the periodicity of a continuous fraction decomposition constructed in the field of formal power series $k((1/x))$, for the special elements of the field of functions $k(\tilde{\mathcal{C}})$ of the hyperelliptic curve $\tilde{\mathcal{C}}:y^2=f(x)$.
Keywords: Jacobian variety, generalized Jacobian, torsion points, continuous fractions, hyperelliptic curve.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FNEF-2022-0011
This work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the state assignment, project no. FNEF-2022-0011.
Received: 11.09.2023
Revised: 20.09.2023
Accepted: 05.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 2, Pages 382–386
DOI: https://doi.org/10.1134/S106456242360063X
Bibliographic databases:
Document Type: Article
UDC: 511.6
Language: Russian
Citation: V. P. Platonov, V. S. Zhgoon, G.V. Fedorov, “On the finiteness of the set of generalized Jacobians with nontrivial torsion points over algebraic number fields”, Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023), 66–70; Dokl. Math., 108:2 (2023), 382–386
Citation in format AMSBIB
\Bibitem{PlaZhgFed23}
\by V.~P.~Platonov, V.~S.~Zhgoon, G.V.~Fedorov
\paper On the finiteness of the set of generalized Jacobians with nontrivial torsion points over algebraic number fields
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 513
\pages 66--70
\mathnet{http://mi.mathnet.ru/danma417}
\crossref{https://doi.org/10.31857/S2686954323700285}
\elib{https://elibrary.ru/item.asp?id=56716548}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 2
\pages 382--386
\crossref{https://doi.org/10.1134/S106456242360063X}
Linking options:
  • https://www.mathnet.ru/eng/danma417
  • https://www.mathnet.ru/eng/danma/v513/p66
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:75
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024