Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 513, Pages 57–65
DOI: https://doi.org/10.31857/S268695432360026X
(Mi danma416)
 

MATHEMATICS

On the integral convergence of numerical schemes calculating gas-dynamic shock waves

V. V. Ostapenko, E. I. Polunina, N. A. Khandeeva

Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
References:
Abstract: A comparative experimental accuracy study of shock-capturing schemes such as RBM(Rusanov–Burstein–Mirin), CWA(Compact high order Weak Approximation) and A-WENO(Alternative Weighted Essentially Non-Oscillatory) schemes is carried out by numerically solving a Cauchy problem with smooth periodic initial data for the Euler equations of gas dynamics. It is shown that in the presence of shock waves, RBM and CWA schemes(in the construction of which nonlinear flux correction is not used) have a higher order of integral convergence, which provides significantly higher accuracy to these schemes (compared to A-WENO scheme) in the areas of shock waves influence, despite noticeable non-physical oscillations at their fronts. This makes it possible to use RBM and CWA schemes as basic ones when constructing combined schemes that monotonically localize shock wave fronts and at the same time maintain higher order accuracy in their influence areas.
Keywords: gas-dynamic equations, shock waves, difference schemes, integral convergence.
Funding agency Grant number
Russian Science Foundation 22-14-00060
The research in Sections 4–7 was supported by the Russian Science Foundation, project no. 22-11-00060.
Presented: E. E. Tyrtyshnikov
Received: 28.04.2023
Revised: 11.08.2023
Accepted: 17.08.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 2, Pages 374–381
DOI: https://doi.org/10.1134/S1064562423701260
Bibliographic databases:
Document Type: Article
UDC: 519.63, 532.3
Language: Russian
Citation: V. V. Ostapenko, E. I. Polunina, N. A. Khandeeva, “On the integral convergence of numerical schemes calculating gas-dynamic shock waves”, Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023), 57–65; Dokl. Math., 108:2 (2023), 374–381
Citation in format AMSBIB
\Bibitem{OstPolKha23}
\by V.~V.~Ostapenko, E.~I.~Polunina, N.~A.~Khandeeva
\paper On the integral convergence of numerical schemes calculating gas-dynamic shock waves
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 513
\pages 57--65
\mathnet{http://mi.mathnet.ru/danma416}
\crossref{https://doi.org/10.31857/S268695432360026X}
\elib{https://elibrary.ru/item.asp?id=56716537}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 2
\pages 374--381
\crossref{https://doi.org/10.1134/S1064562423701260}
Linking options:
  • https://www.mathnet.ru/eng/danma416
  • https://www.mathnet.ru/eng/danma/v513/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:66
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024