Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 512, Pages 58–64
DOI: https://doi.org/10.31857/S2686954322600732
(Mi danma399)
 

MATHEMATICS

On obtaining initial approximation for full wave inversion problem using convolutional neural network

I. B. Petrov, A. S. Stankevich, A. V. Vasyukov

Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
References:
Abstract: The paper considers the problem of choosing the initial approximation when using gradient optimization methods for solving the inverse problem of restoring the distribution of velocities in a heterogeneous continuous medium. A system of acoustic equations is used to describe the behavior of the medium, and a finite-difference scheme is used to solve the direct problem. L-BFGS-B is used as a gradient optimization method. Adjoint state method is used to calculate the gradient of the error functional with respect to the medium parameters. The initial approximation for the gradient method is obtained using a convolutional neural network. The network is trained to predict the distribution of velocities in the medium from the wave response from it. The paper shows that a neural network trained on responses from simple layered structures can be successfully used to solve the inverse problem for a complex Marmousi model.
Keywords: acoustic inversion, numerical optimization, adjoint state method, machine learning, deep learning, convolutional neural networks.
Funding agency Grant number
Russian Science Foundation 22-11-00142
This work was supported by the Russian Science Foundation, project no. 22-11-00142.
Received: 09.12.2022
Revised: 19.05.2023
Accepted: 28.05.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 1, Pages 291–296
DOI: https://doi.org/10.1134/S1064562423700928
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: I. B. Petrov, A. S. Stankevich, A. V. Vasyukov, “On obtaining initial approximation for full wave inversion problem using convolutional neural network”, Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023), 58–64; Dokl. Math., 108:1 (2023), 291–296
Citation in format AMSBIB
\Bibitem{PetStaVas23}
\by I.~B.~Petrov, A.~S.~Stankevich, A.~V.~Vasyukov
\paper On obtaining initial approximation for full wave inversion problem using convolutional neural network
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 512
\pages 58--64
\mathnet{http://mi.mathnet.ru/danma399}
\crossref{https://doi.org/10.31857/S2686954322600732}
\elib{https://elibrary.ru/item.asp?id=54538862}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 1
\pages 291--296
\crossref{https://doi.org/10.1134/S1064562423700928}
Linking options:
  • https://www.mathnet.ru/eng/danma399
  • https://www.mathnet.ru/eng/danma/v512/p58
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025