Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 512, Pages 47–51
DOI: https://doi.org/10.31857/S268695432260046X
(Mi danma397)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On higher integrability of the gradient of solutions to the Zaremba problem for $p$-Laplace equation

Yu. A. Alkhutova, C. D. Apiceb, M. A. Kisatovc, A. G. Chechkinacd

a Vladimir State University, Vladimir, Russian Federation
b University of Salerno, Italia
c Lomonosov Moscow State University, Moscow, Russian Federation
d Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
Citations (1)
References:
Abstract: A higher integrability of the gradient of a solution to the Zaremba problem in a bounded Lipschitz plane domain is proved for the inhomogeneous $p$-Laplace equation.
Keywords: Zaremba problem, meyers estimates, $p$-capacity, imbedding theorems, higher integrability.
Funding agency Grant number
Russian Science Foundation 22-21-00292
Program Modeling, Simulation and Optimization Complex Systems
Alkhutov, Kisatov, and Chechkina acknowledge the support of the Russian Science Foundation, project no. 22-21-00292. D’Apice’s research was supported by the program “Modeling, Simulation, and Optimization of Complex Systems”.
Presented: V. V. Kozlov
Received: 13.07.2022
Revised: 22.05.2023
Accepted: 30.05.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 1, Pages 282–285
DOI: https://doi.org/10.1134/S1064562423700825
Bibliographic databases:
Document Type: Article
UDC: 517.954, 517.982
Language: Russian
Citation: Yu. A. Alkhutov, C. D. Apice, M. A. Kisatov, A. G. Chechkina, “On higher integrability of the gradient of solutions to the Zaremba problem for $p$-Laplace equation”, Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023), 47–51; Dokl. Math., 108:1 (2023), 282–285
Citation in format AMSBIB
\Bibitem{AlkDapKis23}
\by Yu.~A.~Alkhutov, C.~D.~Apice, M.~A.~Kisatov, A.~G.~Chechkina
\paper On higher integrability of the gradient of solutions to the Zaremba problem for $p$-Laplace equation
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 512
\pages 47--51
\mathnet{http://mi.mathnet.ru/danma397}
\crossref{https://doi.org/10.31857/S268695432260046X}
\elib{https://elibrary.ru/item.asp?id=54538843}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 1
\pages 282--285
\crossref{https://doi.org/10.1134/S1064562423700825}
Linking options:
  • https://www.mathnet.ru/eng/danma397
  • https://www.mathnet.ru/eng/danma/v512/p47
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025