Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 512, Pages 33–41
DOI: https://doi.org/10.31857/S2686954323600489
(Mi danma395)
 

MATHEMATICS

Averaged circular spatial restricted three-body problem: Internal case, new results

P. S. Krasil'nikov, A. V. Dobroslavskiy

Moscow Aviation Institute (National Research University), Moscow, Russian Federation
References:
Abstract: We investigate the spatial restricted circular three-body problem in the nonresonant case. Namely, we apply Gaussian averaging to obtain averaged equations in terms of osculating elements and then investigate them. Keplerian ellipse with a focus in the main body (the Sun) is taken as an unperturbed orbit assuming the semi-major axis of the ellipse to be less than the radius of the orbit of the outer planet (internal problem). Using the Parseval formula we have derived the twice-averaged perturbed force function of the problem in the form of an explicit analytical series with coefficients expressed in terms of the Gauss and Clausen hypergeometric functions. An investigation of averaged force function along it’s curves of non-analyticity showed that the series are asymptotic by Poincaré. For a reduced system with one degree of freedom, phase portraits of oscillations in the plane of the Keplerian elements $e$, $\omega$ are constructed in the second and fourth approximations. It is shown the topology of the phase portrait is more complicated in fourth approximation then in first and second approximations provided that the constant $c_1$ of the Lidov–Kozai integral belongs to the interval (0, 0.382).
Keywords: restricted spatial three body problem, averaging method, osculating elements.
Funding agency Grant number
Russian Science Foundation 22-21-00560
This work was performed at the Moscow Aviation Institute and was supported by the Russian Science Foundation, project no. 22-21-00560.
Presented: D. V. Treschev
Received: 20.11.2022
Revised: 23.05.2023
Accepted: 30.05.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 1, Pages 269–276
DOI: https://doi.org/10.1134/S1064562423700886
Bibliographic databases:
Document Type: Article
UDC: 521.135
Language: Russian
Citation: P. S. Krasil'nikov, A. V. Dobroslavskiy, “Averaged circular spatial restricted three-body problem: Internal case, new results”, Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023), 33–41; Dokl. Math., 108:1 (2023), 269–276
Citation in format AMSBIB
\Bibitem{KraDob23}
\by P.~S.~Krasil'nikov, A.~V.~Dobroslavskiy
\paper Averaged circular spatial restricted three-body problem: Internal case, new results
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 512
\pages 33--41
\mathnet{http://mi.mathnet.ru/danma395}
\crossref{https://doi.org/10.31857/S2686954323600489}
\elib{https://elibrary.ru/item.asp?id=54538825}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 1
\pages 269--276
\crossref{https://doi.org/10.1134/S1064562423700886}
Linking options:
  • https://www.mathnet.ru/eng/danma395
  • https://www.mathnet.ru/eng/danma/v512/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025