Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 512, Pages 10–17
DOI: https://doi.org/10.31857/S2686954323600209
(Mi danma392)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Invariant forms of geodesic, potential, and dissipative systems on tangent bundles of finite-dimensional manifolds

M. V. Shamolin

Lomonosov Moscow State University, Moscow, Russian Federation
Citations (3)
References:
Abstract: As is well-known [1–3], finding a sufficient number of tensor invariants (not only the first integrals) allows you to accurately integrate a system of differential equations. For example, the presence of an invariant differential form of the phase volume makes it possible to reduce the number of required first integrals. For conservative systems, this fact is natural, but for systems with attractive or repulsive limit sets, not only some first integrals, but also the coefficients of the available invariant differential forms should, generally speaking, include functions with essentially special points (see also [4–6]). In this paper, complete sets of invariant differential forms for homogeneous systems on tangent bundles to smooth finite-dimensional manifolds are presented for the class of dynamical systems under consideration.
Keywords: dynamical system, dissipation, integrability, tensor invariant.
Presented: V. V. Kozlov
Received: 12.04.2023
Revised: 27.04.2023
Accepted: 05.05.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 1, Pages 248–255
DOI: https://doi.org/10.1134/S1064562423700941
Bibliographic databases:
Document Type: Article
UDC: 517+531.01
Language: Russian
Citation: M. V. Shamolin, “Invariant forms of geodesic, potential, and dissipative systems on tangent bundles of finite-dimensional manifolds”, Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023), 10–17; Dokl. Math., 108:1 (2023), 248–255
Citation in format AMSBIB
\Bibitem{Sha23}
\by M.~V.~Shamolin
\paper Invariant forms of geodesic, potential, and dissipative systems on tangent bundles of finite-dimensional manifolds
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 512
\pages 10--17
\mathnet{http://mi.mathnet.ru/danma392}
\crossref{https://doi.org/10.31857/S2686954323600209}
\elib{https://elibrary.ru/item.asp?id=54538801}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 1
\pages 248--255
\crossref{https://doi.org/10.1134/S1064562423700941}
Linking options:
  • https://www.mathnet.ru/eng/danma392
  • https://www.mathnet.ru/eng/danma/v512/p10
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025