Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 510, Pages 43–51
DOI: https://doi.org/10.31857/S268695432360009X
(Mi danma379)
 

MATHEMATICS

On the accuracy of discontinuous Galerkin method calculating gas-dynamic shock waves

M. E. Ladonkinaab, O. A. Neklyudovaab, V. V. Ostapenkob, V. F. Tishkinab

a Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
b Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
References:
Abstract: The results of a numerical calculation of gas-dynamic shock waves that arise when solving the Cauchy problem with smooth periodic initial data are presented using three variants of the DG (Discontinuous Galerkin) method, in which the solution is sought in the form of a piecewise linear discontinuous function. It is shown that the methods DG1A1 and DG1A2, for which the Cockburn limiter with parameters A1 = 1 and A2 = 2 are used for monotonization, have approximately the same accuracy in the influence areas of shocks (arising as a result of gradient catastrophes within the computational domain), while the nonmonotonic DG1 method, in which this limiter is not used, has a significantly higher accuracy in these areas, despite noticeable non-physical oscillations on shocks. With this in mind, the combined scheme obtained by the joint application of the DG1 and DG1A1 methods monotonously localizes the shocks and maintains increased accuracy in the areas of their influence.
Keywords: gas dynamic equations, shock waves, discontinuous Galerkin method.
Funding agency Grant number
Russian Science Foundation 22-11-00060
21-11-00198
This study was supported by the Russian Science Foundation, project no. 22-11-00060 (Sections 1–4) and project no. 21-11-00198 (Sections 5–7).
Received: 15.02.2023
Revised: 27.03.2023
Accepted: 11.04.2023
English version:
Doklady Mathematics, 2023, Volume 107, Issue 2, Pages 120–125
DOI: https://doi.org/10.1134/S1064562423700746
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “On the accuracy of discontinuous Galerkin method calculating gas-dynamic shock waves”, Dokl. RAN. Math. Inf. Proc. Upr., 510 (2023), 43–51; Dokl. Math., 107:2 (2023), 120–125
Citation in format AMSBIB
\Bibitem{LadNekOst23}
\by M.~E.~Ladonkina, O.~A.~Neklyudova, V.~V.~Ostapenko, V.~F.~Tishkin
\paper On the accuracy of discontinuous Galerkin method calculating gas-dynamic shock waves
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 510
\pages 43--51
\mathnet{http://mi.mathnet.ru/danma379}
\crossref{https://doi.org/10.31857/S268695432360009X}
\elib{https://elibrary.ru/item.asp?id=53986711}
\transl
\jour Dokl. Math.
\yr 2023
\vol 107
\issue 2
\pages 120--125
\crossref{https://doi.org/10.1134/S1064562423700746}
Linking options:
  • https://www.mathnet.ru/eng/danma379
  • https://www.mathnet.ru/eng/danma/v510/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:127
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024