Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 510, Pages 33–38
DOI: https://doi.org/10.31857/S2686954323600064
(Mi danma377)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

The problem of the flow of one type of non-Newtonian fluid through the boundary of a multi-connected domain

V. G. Zvyagin, V. P. Orlov

Voronezh State University, Voronezh, Russia
Citations (2)
References:
Abstract: In this paper, the existence of a weak solution of the initial boundary value problem for the equations of motion of a viscoelastic non-newtonian fluid in a multi-connected domain with memory along the trajectories of a non-smooth velocity field and an inhomogeneous boundary condition. The study assumes the approximation of the original problem by Galerkin-type approximations followed by a passage to the limit based on a priori estimates. The theory of regular Lagrangian flows is used to study the behavior of trajectories of a non-smooth velocity field.
Keywords: viscoelastic continuous medium, multi-connected domain, inhomogeneous boundary condition, a priori estimates, weak solution, regular Lagrangian flow.
Funding agency Grant number
Russian Science Foundation 22-11-00103
This work was supported by the Russian Science Foundation, grant no. 22-11-00103.
Presented: B. S. Kashin
Received: 05.02.2023
Revised: 17.03.2023
Accepted: 22.03.2023
English version:
Doklady Mathematics, 2023, Volume 107, Issue 2, Pages 112–116
DOI: https://doi.org/10.1134/S1064562423700722
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: V. G. Zvyagin, V. P. Orlov, “The problem of the flow of one type of non-Newtonian fluid through the boundary of a multi-connected domain”, Dokl. RAN. Math. Inf. Proc. Upr., 510 (2023), 33–38; Dokl. Math., 107:2 (2023), 112–116
Citation in format AMSBIB
\Bibitem{ZvyOrl23}
\by V.~G.~Zvyagin, V.~P.~Orlov
\paper The problem of the flow of one type of non-Newtonian fluid through the boundary of a multi-connected domain
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 510
\pages 33--38
\mathnet{http://mi.mathnet.ru/danma377}
\crossref{https://doi.org/10.31857/S2686954323600064}
\elib{https://elibrary.ru/item.asp?id=53986709}
\transl
\jour Dokl. Math.
\yr 2023
\vol 107
\issue 2
\pages 112--116
\crossref{https://doi.org/10.1134/S1064562423700722}
Linking options:
  • https://www.mathnet.ru/eng/danma377
  • https://www.mathnet.ru/eng/danma/v510/p33
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:105
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024