Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 510, Pages 29–32
DOI: https://doi.org/10.31857/S2686954323600039
(Mi danma376)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Transcendence of $p$-adic values of generalized hypergeometric series with transcendental polyadic parameters

V. G. Chirskii

Lomonosov Moscow State University, Moscow, Russia
Citations (1)
References:
Abstract: It is established that if $\alpha_1,\dots,\alpha_m$ are polyadic Liouville numbers, and the number $\xi$ is a positive integer or $\Xi$ is a polyadic Liouville number and if $\Psi_0(z)=\sum_{n=0}^\infty(\alpha_1)_n\cdots(\alpha_m)_nz^n$, $\Psi_1(z)=\sum_{n=0}^\infty(\alpha_1+1)_n\cdots(\alpha_m+1)_nz^n$, then there are infinitely many primes $p$ such that the at least one of the $p$-adic integers $\Psi_0(\xi)$, $\Psi_1(\xi)$, (respectively $\Psi_0(\Xi)$, $\Psi_1(\Xi)$) is transcendental.
Keywords: polyadic Liouville numbers, transcendental $p$-adic numbers.
Presented: A. L. Semenov
Received: 18.01.2023
Revised: 19.03.2023
Accepted: 25.03.2023
English version:
Doklady Mathematics, 2023, Volume 107, Issue 2, Pages 109–111
DOI: https://doi.org/10.1134/S1064562423700710
Bibliographic databases:
Document Type: Article
UDC: 511.36
Language: Russian
Citation: V. G. Chirskii, “Transcendence of $p$-adic values of generalized hypergeometric series with transcendental polyadic parameters”, Dokl. RAN. Math. Inf. Proc. Upr., 510 (2023), 29–32; Dokl. Math., 107:2 (2023), 109–111
Citation in format AMSBIB
\Bibitem{Chi23}
\by V.~G.~Chirskii
\paper Transcendence of $p$-adic values of generalized hypergeometric series with transcendental polyadic parameters
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 510
\pages 29--32
\mathnet{http://mi.mathnet.ru/danma376}
\crossref{https://doi.org/10.31857/S2686954323600039}
\elib{https://elibrary.ru/item.asp?id=53986708}
\transl
\jour Dokl. Math.
\yr 2023
\vol 107
\issue 2
\pages 109--111
\crossref{https://doi.org/10.1134/S1064562423700710}
Linking options:
  • https://www.mathnet.ru/eng/danma376
  • https://www.mathnet.ru/eng/danma/v510/p29
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:91
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024