|
This article is cited in 1 scientific paper (total in 1 paper)
MATHEMATICS
Transcendence of $p$-adic values of generalized hypergeometric series with transcendental polyadic parameters
V. G. Chirskii Lomonosov Moscow State University, Moscow, Russia
Abstract:
It is established that if $\alpha_1,\dots,\alpha_m$ are polyadic Liouville numbers, and the number $\xi$ is a positive integer or $\Xi$ is a polyadic Liouville number and if $\Psi_0(z)=\sum_{n=0}^\infty(\alpha_1)_n\cdots(\alpha_m)_nz^n$, $\Psi_1(z)=\sum_{n=0}^\infty(\alpha_1+1)_n\cdots(\alpha_m+1)_nz^n$, then there are infinitely many primes $p$ such that the at least one of the $p$-adic integers $\Psi_0(\xi)$, $\Psi_1(\xi)$, (respectively $\Psi_0(\Xi)$, $\Psi_1(\Xi)$) is transcendental.
Keywords:
polyadic Liouville numbers, transcendental $p$-adic numbers.
Citation:
V. G. Chirskii, “Transcendence of $p$-adic values of generalized hypergeometric series with transcendental polyadic parameters”, Dokl. RAN. Math. Inf. Proc. Upr., 510 (2023), 29–32; Dokl. Math., 107:2 (2023), 109–111
Linking options:
https://www.mathnet.ru/eng/danma376 https://www.mathnet.ru/eng/danma/v510/p29
|
Statistics & downloads: |
Abstract page: | 91 | References: | 23 |
|