Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 510, Pages 8–12
DOI: https://doi.org/10.31857/S2686954323600040
(Mi danma372)
 

MATHEMATICS

Elementary invariants for quantified probability logic

S. O. Speranski

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: Let QPL be the two-sorted probabilistic language proposed in [8], which expands the well-known “polynomial” language described in [3, Section 6] by adding quantifiers over events. We show that all atomless spaces have the same QPL-theory, and this theory is decidable. Also we introduce the notion of elementary invariant for QPL and use it for obtaining exact complexity upper bounds for some interesting probabilistic theories.
Keywords: probability logic, quantification over events, elementary invariants, complexity.
Funding agency Grant number
Russian Science Foundation 21-11-00318
This work was supported by the Russian Science Foundation under grant no. 21-11-00318; see https://rscf.ru/en/project/21-11-00318/.
Presented: L. D. Beklemishev
Received: 20.01.2023
Revised: 01.02.2023
Accepted: 02.03.2023
English version:
Doklady Mathematics, 2023, Volume 107, Issue 2, Pages 93–96
DOI: https://doi.org/10.1134/S1064562423700667
Bibliographic databases:
Document Type: Article
UDC: 510.647+510.5
Language: Russian
Citation: S. O. Speranski, “Elementary invariants for quantified probability logic”, Dokl. RAN. Math. Inf. Proc. Upr., 510 (2023), 8–12; Dokl. Math., 107:2 (2023), 93–96
Citation in format AMSBIB
\Bibitem{Spe23}
\by S.~O.~Speranski
\paper Elementary invariants for quantified probability logic
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 510
\pages 8--12
\mathnet{http://mi.mathnet.ru/danma372}
\crossref{https://doi.org/10.31857/S2686954323600040}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4636323}
\elib{https://elibrary.ru/item.asp?id=53986704}
\transl
\jour Dokl. Math.
\yr 2023
\vol 107
\issue 2
\pages 93--96
\crossref{https://doi.org/10.1134/S1064562423700667}
Linking options:
  • https://www.mathnet.ru/eng/danma372
  • https://www.mathnet.ru/eng/danma/v510/p8
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:143
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024