Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 509, Pages 87–93
DOI: https://doi.org/10.31857/S2686954322600744
(Mi danma367)
 

MATHEMATICS

Estimation of the size of structural formations in ultrasound imaging through statistical analysis of the echo signal

T. V. Yakovlevaa, N. S. Kulberga, D. V. Leonovb

a Federal Research Center "Computer Science and Control", Russian Academy of Sciences, Moscow, Russia
b Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Moscow Department of Health, 127051, Moscow, Russia
References:
Abstract: A fundamentally new approach to solving the problem of determining the size of structural formations in ultrasonic diagnostics is considered. The approach is based on the theoretically justified possibility of estimating the size of inhomogeneities of the studied medium by analyzing the statistical characteristics of an ultrasonic signal scattered on these inhomogeneities. This possibility is conditioned by the fact that the statistical distribution of ultrasound image data varies from Rayleigh distribution to Rice distribution depending on the relation between the coherence area size of the scattered signal and the beamwidth. The work aims at the development of a new method of statistical data analysis that will effectively detect a significant coherent component in the echo signal, thereby providing a mathematical tool for estimating the size of medium inhomogeneities in ultrasound imaging. This approach to ultrasound image analysis would provide the possibility of quantitative estimation of structural formations, which would lead to a significant increase in the information value of ultrasound diagnostics, and the possibility of early pathology detection, opening perspectives for an increase in treatment effectiveness.
Keywords: scattering, tissue differentiation, Rayleigh, Rice, ultrasonic diagnostics.
Presented: Yu. G. Evtushenko
Received: 06.12.2022
Revised: 16.12.2022
Accepted: 20.12.2022
English version:
Doklady Mathematics, 2023, Volume 107, Issue 1, Pages 72–76
DOI: https://doi.org/10.1134/S1064562423700540
Bibliographic databases:
Document Type: Article
UDC: 534.141
Language: Russian
Citation: T. V. Yakovleva, N. S. Kulberg, D. V. Leonov, “Estimation of the size of structural formations in ultrasound imaging through statistical analysis of the echo signal”, Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023), 87–93; Dokl. Math., 107:1 (2023), 72–76
Citation in format AMSBIB
\Bibitem{YakKulLeo23}
\by T.~V.~Yakovleva, N.~S.~Kulberg, D.~V.~Leonov
\paper Estimation of the size of structural formations in ultrasound imaging through statistical analysis of the echo signal
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 509
\pages 87--93
\mathnet{http://mi.mathnet.ru/danma367}
\crossref{https://doi.org/10.31857/S2686954322600744}
\elib{https://elibrary.ru/item.asp?id=50436209}
\transl
\jour Dokl. Math.
\yr 2023
\vol 107
\issue 1
\pages 72--76
\crossref{https://doi.org/10.1134/S1064562423700540}
Linking options:
  • https://www.mathnet.ru/eng/danma367
  • https://www.mathnet.ru/eng/danma/v509/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024