Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 509, Pages 77–82
DOI: https://doi.org/10.31857/S268695432370011X
(Mi danma365)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Identification of nodal points of an elastic inclusion in elastic plane

E. I. Shifrin, A. V. Kaptsov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
Citations (2)
References:
Abstract: A geometric inverse problem of identifying an isotropic, linearly elastic inclusion in an isotropic, linearly elastic plane is considered. It is assumed that constant stresses are given at infinity, and the displacements and applied loads are known on a closed curve enclosing the inclusion. In the case when the inclusion is a quadrature domain, a method for identifying its nodal points has been developed. A numerical example is considered.
Keywords: elasticity theory, plane problem, inclusion, quadrature domain, nodal points, inverse problem.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation АААА-А20-120011690132-4
This work was performed in the framework of the state assignment, state registration no. AAAA-A20-120011690132-4.
Presented: A. L. Semenov
Received: 16.11.2022
Revised: 20.12.2022
Accepted: 28.12.2022
English version:
Doklady Mathematics, 2023, Volume 107, Issue 1, Pages 64–68
DOI: https://doi.org/10.1134/S1064562423700527
Bibliographic databases:
Document Type: Article
UDC: 514.86
Language: Russian
Citation: E. I. Shifrin, A. V. Kaptsov, “Identification of nodal points of an elastic inclusion in elastic plane”, Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023), 77–82; Dokl. Math., 107:1 (2023), 64–68
Citation in format AMSBIB
\Bibitem{ShiKap23}
\by E.~I.~Shifrin, A.~V.~Kaptsov
\paper Identification of nodal points of an elastic inclusion in elastic plane
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 509
\pages 77--82
\mathnet{http://mi.mathnet.ru/danma365}
\crossref{https://doi.org/10.31857/S268695432370011X}
\elib{https://elibrary.ru/item.asp?id=50436207}
\transl
\jour Dokl. Math.
\yr 2023
\vol 107
\issue 1
\pages 64--68
\crossref{https://doi.org/10.1134/S1064562423700527}
Linking options:
  • https://www.mathnet.ru/eng/danma365
  • https://www.mathnet.ru/eng/danma/v509/p77
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:65
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024