Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 509, Pages 69–76
DOI: https://doi.org/10.31857/S2686954322600768
(Mi danma364)
 

This article is cited in 7 scientific papers (total in 7 papers)

MATHEMATICS

Invariant volume forms of geodesic, potential, and dissipative systems on a tangent bundle of a four-dimensional manifold

M. V. Shamolin

Lomonosov Moscow State University, Moscow, Russian Federation
Citations (7)
References:
Abstract: Complete sets of invariant differential forms of phase volume for homogeneous dynamical systems on tangent bundles of smooth four-dimensional manifolds are presented. The connection between the existence of these invariants and the complete set of first integrals necessary for the integration of geodesic, potential, and dissipative systems is shown. The introduced force fields make the considered systems dissipative with dissipation of different signs and generalize previously considered fields.
Keywords: dynamical system, integrability, dissipation, transcendental first integral, invariant differential form.
Presented: V. V. Kozlov
Received: 22.12.2022
Revised: 24.12.2022
Accepted: 30.12.2022
English version:
Doklady Mathematics, 2023, Volume 107, Issue 1, Pages 57–63
DOI: https://doi.org/10.1134/S1064562423700515
Bibliographic databases:
Document Type: Article
UDC: 517+531.01
Language: Russian
Citation: M. V. Shamolin, “Invariant volume forms of geodesic, potential, and dissipative systems on a tangent bundle of a four-dimensional manifold”, Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023), 69–76; Dokl. Math., 107:1 (2023), 57–63
Citation in format AMSBIB
\Bibitem{Sha23}
\by M.~V.~Shamolin
\paper Invariant volume forms of geodesic, potential, and dissipative systems on a tangent bundle of a four-dimensional manifold
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 509
\pages 69--76
\mathnet{http://mi.mathnet.ru/danma364}
\crossref{https://doi.org/10.31857/S2686954322600768}
\elib{https://elibrary.ru/item.asp?id=50436206}
\transl
\jour Dokl. Math.
\yr 2023
\vol 107
\issue 1
\pages 57--63
\crossref{https://doi.org/10.1134/S1064562423700515}
Linking options:
  • https://www.mathnet.ru/eng/danma364
  • https://www.mathnet.ru/eng/danma/v509/p69
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024