Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 509, Pages 65–68
DOI: https://doi.org/10.31857/S2686954322600719
(Mi danma363)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

An inverse problem for electrodynamic equations with nonlinear conductivity

V. G. Romanov

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
Citations (3)
References:
Abstract: The inverse problem of determining the variable conductivity coefficient in the system of electrodynamic equations with nonlinear conductivity is considered. The required coefficient is assumed to be a smooth compactly supported function of space variables in $\mathbb{R}^3$. A plane wave with a sharp front traveling from the homogeneous space in some direction $\nu$ is incident on an inhomogeneity. The direction is a parameter of the problem. The magnitude of the electric strength vector for some range of incident wave directions and for times close to those at which the wave arrives at points of the ball surface containing the inhomogeneity is given as information for solving the inverse problem. It is shown that this information reduces the inverse problem to an X-ray tomography problem, for which numerical solution algorithms are well developed.
Keywords: nonlinear electrodynamic equations, plane waves, X-ray tomography, uniqueness.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0009
This work was carried out within the state assignment of the Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, project no. FWNF-2022-0009.
Received: 29.11.2022
Revised: 11.12.2022
Accepted: 28.12.2022
English version:
Doklady Mathematics, 2023, Volume 107, Issue 1, Pages 53–56
DOI: https://doi.org/10.1134/S1064562423700503
Bibliographic databases:
Document Type: Article
UDC: 517.968
Language: Russian
Citation: V. G. Romanov, “An inverse problem for electrodynamic equations with nonlinear conductivity”, Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023), 65–68; Dokl. Math., 107:1 (2023), 53–56
Citation in format AMSBIB
\Bibitem{Rom23}
\by V.~G.~Romanov
\paper An inverse problem for electrodynamic equations with nonlinear conductivity
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 509
\pages 65--68
\mathnet{http://mi.mathnet.ru/danma363}
\crossref{https://doi.org/10.31857/S2686954322600719}
\elib{https://elibrary.ru/item.asp?id=50436205}
\transl
\jour Dokl. Math.
\yr 2023
\vol 107
\issue 1
\pages 53--56
\crossref{https://doi.org/10.1134/S1064562423700503}
Linking options:
  • https://www.mathnet.ru/eng/danma363
  • https://www.mathnet.ru/eng/danma/v509/p65
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024