Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 509, Pages 23–27
DOI: https://doi.org/10.31857/S2686954322600598
(Mi danma356)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Operator spectrum transformation in Hartree–Fock and Kohn–Sham equations

A. A. Danshin, A. A. Kovalishin

National Research Centre "Kurchatov Institute", Moscow, Russia
Citations (3)
References:
Abstract: The paper proposes a method for preliminary transformation of the spectrum of the equation operator both in the Hartree–Fock method and in density functional theory. This method allows to solve a partial eigenvalue problem instead of the complete one, while the eigenfunctions are ordered in a way convenient for calculation. The transformation makes an old idea of grid approximation of a solution competitive in terms of computational speed as compared to widely used approaches based on basis sets methods.
Keywords: Hartree–Fock method, density functional theory, eigenvalue problem.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 2770
This work was supported by National Research Center “Kurchatov Institute” (order no. 2770 of October 28, 2021).
Received: 23.09.2022
Revised: 20.10.2022
Accepted: 20.12.2022
English version:
Doklady Mathematics, 2023, Volume 107, Issue 1, Pages 17–20
DOI: https://doi.org/10.1134/S1064562423700412
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: A. A. Danshin, A. A. Kovalishin, “Operator spectrum transformation in Hartree–Fock and Kohn–Sham equations”, Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023), 23–27; Dokl. Math., 107:1 (2023), 17–20
Citation in format AMSBIB
\Bibitem{DanKov23}
\by A.~A.~Danshin, A.~A.~Kovalishin
\paper Operator spectrum transformation in Hartree--Fock and Kohn--Sham equations
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 509
\pages 23--27
\mathnet{http://mi.mathnet.ru/danma356}
\crossref{https://doi.org/10.31857/S2686954322600598}
\elib{https://elibrary.ru/item.asp?id=50436198}
\transl
\jour Dokl. Math.
\yr 2023
\vol 107
\issue 1
\pages 17--20
\crossref{https://doi.org/10.1134/S1064562423700412}
Linking options:
  • https://www.mathnet.ru/eng/danma356
  • https://www.mathnet.ru/eng/danma/v509/p23
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:94
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024