Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 508, Pages 146–148
DOI: https://doi.org/10.31857/S2686954322070244
(Mi danma351)
 

ADVANCED STUDIES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

FusionBrain: research project in multimodal and multitask learning

D. V. Dimitrovab, A. V. Kuznetsovab, A. A. Mal’tsevaa, E. F. Goncharovab

a Sberbank, Moscow, Russia
b Artificial Intelligence Research Institute, Moscow, Russia
References:
Abstract: FusionBrain is a research project aimed at the development of efficient multitask and multimodal models and their application to a wide variety of practical tasks. The general purpose and idea of the project is to learn to create models that can effectively extract additional important knowledge from a large number of data modalities and training tasks and, as a result, can better solve other tasks. The research is performed in many modalities: texts, images, audio, video, programming languages, graphs (e.g., molecular structures), time series, and so on. The lists of tasks to be solved is large and ranges from classical tasks in computer vision and natural language processing to tasks involving different modalities: VideoQA, Visual Commonsense Reasoning, and IQ tests (which are difficult to solve even for humans). The ability of models to solve tasks formulated in natural or visual languages and to cope with hidden tasks (for which there were no examples in the training set). Among other things, the studies focus on reduction in data and human and computational resources necessary at the training and inference stages. Some results concerning the study and development of multimodal and multitask architectures are described in this paper.
Keywords: multimodality, multitask approach, computer vision, natural language processing, neural networks, transformers, fundamental models, FusionBrain.
Presented: S. S. Goncharov
Received: 28.10.2022
Revised: 28.10.2022
Accepted: 01.11.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue suppl. 1, Pages S129–S130
DOI: https://doi.org/10.1134/S1064562422060242
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: D. V. Dimitrov, A. V. Kuznetsov, A. A. Mal’tseva, E. F. Goncharova, “FusionBrain: research project in multimodal and multitask learning”, Dokl. RAN. Math. Inf. Proc. Upr., 508 (2022), 146–148; Dokl. Math., 106:suppl. 1 (2022), S129–S130
Citation in format AMSBIB
\Bibitem{DimKuzMal22}
\by D.~V.~Dimitrov, A.~V.~Kuznetsov, A.~A.~Mal’tseva, E.~F.~Goncharova
\paper FusionBrain: research project in multimodal and multitask learning
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 508
\pages 146--148
\mathnet{http://mi.mathnet.ru/danma351}
\crossref{https://doi.org/10.31857/S2686954322070244}
\elib{https://elibrary.ru/item.asp?id=49991324}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue suppl. 1
\pages S129--S130
\crossref{https://doi.org/10.1134/S1064562422060242}
Linking options:
  • https://www.mathnet.ru/eng/danma351
  • https://www.mathnet.ru/eng/danma/v508/p146
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:84
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024