Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 508, Pages 134–145
DOI: https://doi.org/10.31857/S2686954322070232
(Mi danma350)
 

This article is cited in 44 scientific papers (total in 44 papers)

ADVANCED STUDIES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

eco2AI: carbon emissions tracking of machine learning models as the first step towards sustainable AI

S. A. Budennyyab, V. D. Lazarevb, N. N. Zakharenkoa, A. N. Korovinb, O. A. Plosskayaa, D. V. Dimitrova, V. S. Akhripkina, I. V. Pavlova, I. V. Oseledetsbc, I. S. Barsolad, I. V. Egorovd, A. A. Kosterinad, L. E. Zhukove

a Sber AI Lab, Москва, Россия
b Artificial Intelligence Research Institute, Moscow
c Skolkovo Institute of Science and Technology, Moscow, Russia
d Sber ESG, Moscow, Russia
e HSE University, Moscow
Citations (44)
References:
Abstract: The size and complexity of deep neural networks used in AI applications continue to grow exponentially, significantly increasing energy consumption for training and inference by these models. We introduce an open-source package eco2AI to help data scientists and researchers to track the energy consumption and equivalent CO$_2$ emissions of their models in a straightforward way. In eco2AI we focus on accurate tracking of energy consumption and regional CO$_2$ emissions accounting. We encourage the research for community to search for new optimal Artificial Intelligence (AI) architectures with lower computational cost. The motivation also comes from the concept of AI-based greenhouse gases sequestrating cycle with both Sustainable AI and Green AI pathways. The code and documentation are hosted on Github under the Apache 2.0 license https://github.com/sb-ai-lab/Eco2AI.
Keywords: ESG, AI, sustainability, carbon footprint, ecology, CO$_2$ emissions, GHG.
Presented: A. P. Kuleshov
Received: 28.10.2022
Revised: 28.10.2022
Accepted: 01.11.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue suppl. 1, Pages S118–S128
DOI: https://doi.org/10.1134/S1064562422060230
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: S. A. Budennyy, V. D. Lazarev, N. N. Zakharenko, A. N. Korovin, O. A. Plosskaya, D. V. Dimitrov, V. S. Akhripkin, I. V. Pavlov, I. V. Oseledets, I. S. Barsola, I. V. Egorov, A. A. Kosterina, L. E. Zhukov, “eco2AI: carbon emissions tracking of machine learning models as the first step towards sustainable AI”, Dokl. RAN. Math. Inf. Proc. Upr., 508 (2022), 134–145; Dokl. Math., 106:suppl. 1 (2022), S118–S128
Citation in format AMSBIB
\Bibitem{BudLazZak22}
\by S.~A.~Budennyy, V.~D.~Lazarev, N.~N.~Zakharenko, A.~N.~Korovin, O.~A.~Plosskaya, D.~V.~Dimitrov, V.~S.~Akhripkin, I.~V.~Pavlov, I.~V.~Oseledets, I.~S.~Barsola, I.~V.~Egorov, A.~A.~Kosterina, L.~E.~Zhukov
\paper eco2AI: carbon emissions tracking of machine learning models as the first step towards sustainable AI
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 508
\pages 134--145
\mathnet{http://mi.mathnet.ru/danma350}
\crossref{https://doi.org/10.31857/S2686954322070232}
\elib{https://elibrary.ru/item.asp?id=49991323}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue suppl. 1
\pages S118--S128
\crossref{https://doi.org/10.1134/S1064562422060230}
Linking options:
  • https://www.mathnet.ru/eng/danma350
  • https://www.mathnet.ru/eng/danma/v508/p134
  • This publication is cited in the following 44 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:80
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024