Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 508, Pages 7–12
DOI: https://doi.org/10.31857/S2686954322070116
(Mi danma331)
 

RESULTS OF ARTIFICIAL INTELLIGENCE RESEARCH CENTERS

Intersectoral artificial intelligence technologies: search for and implementation of efficient solutions

A. V. Kornaev, I. A. Nikonov, R. F. Kuleev

Research Center for Artificial Intelligence, Innopolis University, Innopolis, Russia
References:
Abstract: Most studies in the area of artificial intelligence are associated with resolving the following contradiction. On the one hand, deep learning methods are universal and can be applied in various fields of research due to the generality of their basic mathematical and algorithmic ideas, software implementations, and the possibility of transfer of previously obtained learning results. On the other hand, the process of learning for solving a particular task requires specialized qualitatively labeled data, and high accuracy can be achieved by applying original algorithmic solutions and a proper tuning of hyperparameters. In the work of the Research Center for Artificial Intelligence of Innopolis University, this contradiction is resolved by creating an algorithmic core and corresponding hardware-software tools shared by the solutions of diverse intersectoral tasks. The scientific work of the Center is aimed at the creation of foundations sufficient for solving practical tasks. This paper covers the main results of scientific and practical works of the Center in 2022.
Keywords: artificial intelligence, framework, image processing, reinforcement learning, drug design, design of materials, convolutional neural networks, graph neural networks.
Presented: A. A. Shananin
Received: 28.10.2022
Revised: 28.10.2022
Accepted: 01.11.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue suppl. 1, Pages S4–S8
DOI: https://doi.org/10.1134/S1064562422060114
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: A. V. Kornaev, I. A. Nikonov, R. F. Kuleev, “Intersectoral artificial intelligence technologies: search for and implementation of efficient solutions”, Dokl. RAN. Math. Inf. Proc. Upr., 508 (2022), 7–12; Dokl. Math., 106:suppl. 1 (2022), S4–S8
Citation in format AMSBIB
\Bibitem{KorNikKul22}
\by A.~V.~Kornaev, I.~A.~Nikonov, R.~F.~Kuleev
\paper Intersectoral artificial intelligence technologies: search for and implementation of efficient solutions
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 508
\pages 7--12
\mathnet{http://mi.mathnet.ru/danma331}
\crossref{https://doi.org/10.31857/S2686954322070116}
\elib{https://elibrary.ru/item.asp?id=49991304}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue suppl. 1
\pages S4--S8
\crossref{https://doi.org/10.1134/S1064562422060114}
Linking options:
  • https://www.mathnet.ru/eng/danma331
  • https://www.mathnet.ru/eng/danma/v508/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:95
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024